ترغب بنشر مسار تعليمي؟ اضغط هنا

COSMOGRAIL XIX: Time delays in 18 strongly lensed quasars from 15 years of optical monitoring

120   0   0.0 ( 0 )
 نشر من قبل Martin Millon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of 15 years of monitoring lensed quasars, which was conducted by the COSMOGRAIL programme at the Leonhard Euler 1.2m Swiss Telescope. The decade-long light curves of 23 lensed systems are presented for the first time. We complement our data set with other monitoring data available in the literature to measure the time delays in 18 systems, among which nine reach a relative precision better than 15% for at least one time delay. To achieve this, we developed an automated version of the curve-shifting toolbox PyCS to ensure robust estimation of the time delay in the presence of microlensing, while accounting for the errors due to the imperfect representation of microlensing. We also re-analysed the previously published time delays of RX J1131$-$1231 and HE 0435$-$1223, by adding six and two new seasons of monitoring, respectively, and confirming the previous time-delay measurements. When the time delay measurement is possible, we corrected the light curves of the lensed images from their time delay and present the difference curves to highlight the microlensing signal contained in the data. To date, this is the largest sample of decade-long lens monitoring data, which is useful to measure $H_0$ and the size of quasar accretion discs with microlensing as well as to study quasar variability.



قيم البحث

اقرأ أيضاً

161 - E.Eulaers , M. Tewes , P. Magain 2013
Aims. Within the framework of the COSMOGRAIL collaboration we present 7- and 8.5-year-long light curves and time-delay estimates for two gravitationally lensed quasars: SDSS J1206+4332 and HS 2209+1914. Methods. We monitored these doubly lensed quasa rs in the R-band using four telescopes: the Mercator, Maidanak, Himalayan Chandra, and Euler Telescopes, together spanning a period of 7 to 8.5 observing seasons from mid-2004 to mid-2011. The photometry of the quasar images was obtained through simultaneous deconvolution of these data. The time delays were determined from these resulting light curves using four very different techniques: a dispersion method, a spline fit, a regression difference technique, and a numerical model fit. This minimizes the bias that might be introduced by the use of a single method. Results. The time delay for SDSS J1206+4332 is Delta_t AB = 111.3 +/- 3 days with A leading B, confirming a previously published result within the error bars. For HS 2209+1914 we present a new time delay of Delta_t BA = 20.0 +/- 5 days with B leading A. Conclusions. The combination of data from up to four telescopes have led to well-sampled and nearly 9-season-long light curves, which were necessary to obtain these results, especially for the compact doubly lensed quasar HS 2209+1914.
We present new measurements of the time delays of WFI2033-4723. The data sets used in this work include 14 years of data taken at the 1.2m Leonhard Euler Swiss telescope, 13 years of data from the SMARTS 1.3m telescope at Las Campanas Observatory and a single year of high-cadence and high-precision monitoring at the MPIA 2.2m telescope. The time delays measured from these different data sets, all taken in the R-band, are in good agreement with each other and with previous measurements from the literature. Combining all the time-delay estimates from our data sets results in Dt_AB = 36.2-0.8+0.7 days (2.1% precision), Dt_AC = -23.3-1.4+1.2 days (5.6%) and Dt_BC = -59.4-1.3+1.3 days (2.2%). In addition, the close image pair A1-A2 of the lensed quasars can be resolved in the MPIA 2.2m data. We measure a time delay consistent with zero in this pair of images. We also explore the prior distributions of microlensing time-delay potentially affecting the cosmological time-delay measurements of WFI2033-4723. There is however no strong indication in our measurements that microlensing time delay is neither present nor absent. This work is part of a H0LiCOW series focusing on measuring the Hubble constant from WFI2033-4723.
111 - M. Millon , F. Courbin , V. Bonvin 2020
We present six new time-delay measurements obtained from $R_c$-band monitoring data acquired at the Max Planck Institute for Astrophysics (MPIA) 2.2 m telescope at La Silla observatory between October 2016 and February 2020. The lensed quasars HE 004 7-1756, WG 0214-2105, DES 0407-5006, 2M 1134-2103, PSJ 1606-2333 and DES 2325-5229 were observed almost daily at high signal-to-noise ratio to obtain high-quality light curves where we can record fast and small-amplitude variations of the quasars. We measured time delays between all pairs of multiple images with only one or two seasons of monitoring with the exception of the time delays relative to image D of PSJ 1606-2333. The most precise estimate was obtained for the delay between image A and image B of DES 0407-5006, where $tau_{AB} = -128.4^{+3.5}_{-3.8}$ d (2.8% precision) including systematics due to extrinsic variability in the light curves. For HE 0047-1756, we combined our high-cadence data with measurements from decade-long light curves from previous COSMOGRAIL campaigns, and reach a precision of 0.9 d on the final measurement. The present work demonstrates the feasibility of measuring time delays in lensed quasars in only one or two seasons, provided high signal-to-noise ratio data are obtained at a cadence close to daily.
Time delays between the multiple images of strongly lensed Type Ia supernovae (glsneia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on the measurement have not been studied in detail. Here we quanti fy the effect of microlensing on the glsnia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glsneia. Microlensing has a negligible effect on the LSST glsnia yield, but it can be increased by a factor of $sim$2 to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glsneia is achromatic until 3 rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glsneia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glsnia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1--2 day time delay on the recently discovered glsnia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.
59 - A. Eigenbrod 2005
We use numerical simulations to test a broad range of plausible observational strategies designed to measure the time delay between the images of gravitationally lensed quasars. Artificial quasar light curves are created along with Monte-Carlo simula tions in order to determine the best temporal sampling to adopt when monitoring the photometric variations of systems with time delays between 5 and 120 days, i.e., always shorter than the visibility window across the year. Few and realistic assumptions are necessary on the quasar photometric variations (peak-to-peak amplitude and time-scale of the variations) and on the accuracy of the individual photometric points. The output of the simulations is the (statistical) relative error made on the time delay measurement, as a function of 1- the object visibility over the year, 2- the temporal sampling of the light curves and 3- the time delay. Also investigated is the effect of long term microlensing variations which must be below the 5 % level (either intrinsically or by subtraction) if the goal is to measure time delays with an accuracy of 1-2 %. However, while microlensing increases the random error on the time delay, it does not significantly increase the systematic error, which is always a factor 5 to 10 smaller than the random error. Finally, it is shown that, when the time delay is comparable to the visibility window of the object, a logarithmic sampling can significantly improve the time delay determination. All results are presented in the form of compact plots to be used to optimize the observational strategy of future monitoring programs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا