ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

95   0   0.0 ( 0 )
 نشر من قبل Daniel Goldstein
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time delays between the multiple images of strongly lensed Type Ia supernovae (glsneia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on the measurement have not been studied in detail. Here we quantify the effect of microlensing on the glsnia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glsneia. Microlensing has a negligible effect on the LSST glsnia yield, but it can be increased by a factor of $sim$2 to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glsneia is achromatic until 3 rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glsneia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glsnia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1--2 day time delay on the recently discovered glsnia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.



قيم البحث

اقرأ أيضاً

Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts $(zgtrsim 2)$, probe potential SN Ia evolution, and deliver high-precision constraints on $H_0$, $w$, and $Omega_ m$ via time delays. However, only one, iPTF16geu, has been found to date, and many more are needed to achieve these goals. To increase the multiply imaged SN Ia discovery rate, we present a simple algorithm for identifying gravitationally lensed SN Ia candidates in cadenced, wide-field optical imaging surveys. The technique is to look for supernovae that appear to be hosted by elliptical galaxies, but that have absolute magnitudes implied by the apparent hosts photometric redshifts that are far brighter than the absolute magnitudes of normal SNe Ia (the brightest type of supernovae found in elliptical galaxies). Importantly, this purely photometric method does not require the ability to resolve the lensed images for discovery. AGN, the primary sources of contamination that affect the method, can be controlled using catalog cross-matches and color cuts. Highly magnified core-collapse supernovae will also be discovered as a byproduct of the method. Using a Monte Carlo simulation, we forecast that LSST can discover up to 500 multiply imaged SNe Ia using this technique in a 10-year $z$-band search, more than an order of magnitude improvement over previous estimates (Oguri & Marshall 2010). We also predict that ZTF should find up to 10 multiply imaged SNe Ia using this technique in a 3-year $R$-band search---despite the fact that this survey will not resolve a single system.
We report the discovery of a multiply-imaged gravitationally lensed Type Ia supernova, iPTF16geu (SN 2016geu), at redshift $z=0.409$. This phenomenon could be identified because the light from the stellar explosion was magnified more than fifty times by the curvature of space around matter in an intervening galaxy. We used high spatial resolution observations to resolve four images of the lensed supernova, approximately 0.3 from the center of the foreground galaxy. The observations probe a physical scale of $sim$1 kiloparsec, smaller than what is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration implies close alignment between the line-of-sight to the supernova and the lens. The relative magnifications of the four images provide evidence for sub-structures in the lensing galaxy.
To use strongly lensed Type Ia supernovae (LSNe Ia) for cosmology, a time-delay measurement between the multiple supernova (SN) images is necessary. The sharp rise and decline of SN Ia light curves make them promising for measuring time delays, but m icrolensing can distort these light curves and therefore add large uncertainties to the measurements. An alternative approach is to use color curves where uncertainties due to microlensing are significantly reduced for a certain period of time known as the achromatic phase. In this work, we investigate in detail the achromatic phase, testing four different SN Ia models with various microlensing configurations. We find on average an achromatic phase of around three rest-frame weeks or longer for most color curves but the spread in the duration of the achromatic phase (due to different microlensing maps and filter combinations) is quite large and an achromatic phase of just a few days is also possible. Furthermore, the achromatic phase is longer for smoother microlensing maps, lower macro-magnifications and larger mean Einstein radii of microlenses. From our investigations, we do not find a strong dependency on the model or on asymmetries in the SN ejecta. Further, we find that three independent LSST color curves exhibit features such as extreme points or turning points within the achromatic phase, which make them promising for time-delay measurements. These curves contain combinations of rest-frame bands $u$, $g$, $r$, and $i$ and to observe them for typical LSN Ia redshifts, it would be ideal to cover (observer-frame) filters $r$, $i$, $z$, $y$, $J$, and $H$.
Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia show evidence of st rong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well-studied previously, three were previously known but are analyzed in-depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of ~2000 km/s) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 d past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 <= M_R <= -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.
Despite their use as cosmological distance indicators and their importance in the chemical evolution of galaxies, the unequivocal identification of the progenitor systems and explosion mechanism of normal type Ia supernova (SN Ia) remains elusive. Th e leading hypothesis is that such a supernova is a thermonuclear explosion of a carbon-oxygen white dwarf, but the exact explosion mechanism is still a matter of debate. Observation of a galactic SN Ia would be of immense value in answering the many open questions related to these events. One potentially useful source of information about the explosion mechanism and progenitor is the neutrino signal. In this paper we compute the expected neutrino signal from a gravitationally confined detonation (GCD) explosion scenario for a SN~Ia and show how the flux at Earth contains features in time and energy unique to this scenario. We then calculate the expected event rates in the Super-K, Hyper-K, JUNO, DUNE, and IceCube detectors and find both Hyper-K and IceCube would see a few events for a GCD supernova at 1 kpc or closer, while Super-K, JUNO, and DUNE would see a events if the supernova were closer than ${sim}0.3$ kpc. The distance and detector criteria needed to resolve the time and spectral features arising from the explosion mechanism, neutrino production, and neutrino oscillation processes are also discussed. The neutrino signal from the GCD is then compared with the signal from a deflagration-to-detonation transition (DDT) explosion model computed previously. We find the overall event rate is the most discriminating feature between the two scenarios followed by the event rate time structure. Using the event rate in the Hyper-K detector alone, the DDT can be distinguished from the GCD at 2$sigma$ if the distance to the supernova is less than $2.3;{rm kpc}$ for a normal mass ordering and $3.6;{rm kpc}$ for an inverted ordering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا