ﻻ يوجد ملخص باللغة العربية
It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known polynomial time algorithm is significantly suboptimal. Designing a polynomial-time algorithm to construct (near-)optimal fault-tolerant spanners was given as an explicit open problem in the two most recent papers on fault-tolerant spanners ([Bodwin, Dinitz, Parter, Vassilevka Williams SODA 18] and [Bodwin, Patel PODC 19]). We give a surprisingly simple algorithm which runs in polynomial time and constructs fault-tolerant spanners that are extremely close to optimal (off by only a linear factor in the stretch) by modifying the greedy algorithm to run in polynomial time. To complement this result, we also give simple distributed constructions in both the LOCAL and CONGEST models.
Recent work has established that, for every positive integer $k$, every $n$-node graph has a $(2k-1)$-spanner on $O(f^{1-1/k} n^{1+1/k})$ edges that is resilient to $f$ edge or vertex faults. For vertex faults, this bound is tight. However, the case
Recent work has pinned down the existentially optimal size bounds for vertex fault-tolerant spanners: for any positive integer $k$, every $n$-node graph has a $(2k-1)$-spanner on $O(f^{1-1/k} n^{1+1/k})$ edges resilient to $f$ vertex faults, and ther
Over the past decade, there has been increasing interest in distributed/parallel algorithms for processing large-scale graphs. By now, we have quite fast algorithms -- usually sublogarithmic-time and often $poly(loglog n)$-time, or even faster -- for
The paper presents fault-tolerant (FT) labeling schemes for general graphs, as well as, improved FT routing schemes. For a given $n$-vertex graph $G$ and a bound $f$ on the number of faults, an $f$-FT connectivity labeling scheme is a distributed dat
We consider the distributed version of the Multiple Knapsack Problem (MKP), where $m$ items are to be distributed amongst $n$ processors, each with a knapsack. We propose different distributed approximation algorithms with a tradeoff between time and