ﻻ يوجد ملخص باللغة العربية
Supermassive black holes at the centres of galaxies are often surrounded by dense star clusters. For a wide range of cluster properties and orbital radii the resonant relaxation times in these clusters are much shorter than the Hubble time. Since resonant relaxation conserves semimajor axes, these clusters should be in the maximum-entropy state consistent with the given semimajor axis distribution. We determine these maximum-entropy equilibria in a simplified model in which all of the stars have the same semimajor axes. We find that the cluster exhibits a phase transition from a disordered, spherical, high-temperature equilibrium to an ordered low-temperature equilibrium in which the stellar orbits have a preferred orientation or line of apsides. Here `temperature is a measure of the non-Keplerian or self-gravitational energy of the cluster; in the spherical state, temperature is a function of the rms eccentricity of the stars. We explore a simple two-parameter model of black-hole star clusters -- the two parameters are semimajor axis and black-hole mass --- and find that clusters are susceptible to the lopsided phase transition over a range of ~100 in semimajor axis, mostly for black-hole masses less than $10^{7.5}$ solar masses.
The supermassive black holes found at the centers of galaxies are often surrounded by dense star clusters. The ages of these clusters are generally longer than the resonant-relaxation time and shorter than the two-body relaxation time over a wide ran
The centers of most galaxies contain massive black holes surrounded by dense star clusters. The structure of these clusters determines the rate and properties of observable transient events, such as flares from tidally disrupted stars and gravitation
Recent research has been constraining the retention fraction of black holes (BHs) in globular clusters by comparing the degree of mass segregation with $N$-body simulations. They are consistent with an upper limit of the retention fraction being $50,
Hierarchical triples are expected to be produced by the frequent binary-mediated interactions in the cores of globular clusters. In some of these triples, the tertiary companion can drive the inner binary to merger following large eccentricity oscill
The detection of gravitational waves emitted during a neutron star - black hole merger and the associated electromagnetic counterpart will provide a wealth of information about stellar evolution nuclear matter, and General Relativity. While the theor