ﻻ يوجد ملخص باللغة العربية
The supermassive black holes found at the centers of galaxies are often surrounded by dense star clusters. The ages of these clusters are generally longer than the resonant-relaxation time and shorter than the two-body relaxation time over a wide range of radii. We explore the thermodynamic equilibria of such clusters using a simple self-similar model. We find that the cluster exhibits a phase transition between a high-temperature spherical equilibrium and a low-temperature equilibrium in which the stars are on high-eccentricity orbits with nearly the same orientation. In the absence of relativistic precession, the spherical equilibrium is metastable below the critical temperature and the phase transition is first-order. When relativistic effects are important, the spherical equilibrium is linearly unstable below the critical temperature and the phase transition is continuous. A similar phase transition has recently been found in a model cluster composed of stars with a single semimajor axis. The presence of the same phenomenon in two quite different cluster models suggests that lopsided equilibria may form naturally in a wide variety of black-hole star clusters.
Supermassive black holes at the centres of galaxies are often surrounded by dense star clusters. For a wide range of cluster properties and orbital radii the resonant relaxation times in these clusters are much shorter than the Hubble time. Since res
The centers of most galaxies contain massive black holes surrounded by dense star clusters. The structure of these clusters determines the rate and properties of observable transient events, such as flares from tidally disrupted stars and gravitation
Recent research has been constraining the retention fraction of black holes (BHs) in globular clusters by comparing the degree of mass segregation with $N$-body simulations. They are consistent with an upper limit of the retention fraction being $50,
Hierarchical triples are expected to be produced by the frequent binary-mediated interactions in the cores of globular clusters. In some of these triples, the tertiary companion can drive the inner binary to merger following large eccentricity oscill
The detection of gravitational waves emitted during a neutron star - black hole merger and the associated electromagnetic counterpart will provide a wealth of information about stellar evolution nuclear matter, and General Relativity. While the theor