ترغب بنشر مسار تعليمي؟ اضغط هنا

NTMpy: An open source package for solving coupled parabolic differential equations in the framework of the three-temperature model

69   0   0.0 ( 0 )
 نشر من قبل Stefano Bonetti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The NTMpy code package allows for simulating the one-dimensional thermal response of multilayer samples after optical excitation, as in a typical pump-probe experiment. Several Python routines are combined and optimized to solve coupled heat diffusion equations in one dimension, on arbitrary piecewise homogeneous material stacks, in the framework of the so-called three-temperature model. The energy source deposited in the material is modelled as a light pulse of arbitrary cross-section and temporal profile. A transfer matrix method enables the calculation of realistic light absorption in presence of scattering interfaces as in multilayer samples. The open source code is fully object-oriented to enable a user-friendly and intuitive interface for adjusting the physically relevant input parameters. Here, we describe the mathematical background of the code, we lay out the workflow, and we validate the functionality of our package by comparing it to commercial software, as well as to experimental transient reflectivity data recorded in a pump-probe experiment with femtosecond light pulses.



قيم البحث

اقرأ أيضاً

373 - Lu Lu , Xuhui Meng , Zhiping Mao 2019
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
The time evolution of dynamical systems is frequently described by ordinary differential equations (ODEs), which must be solved for given initial conditions. Most standard approaches numerically integrate ODEs producing a single solution whose values are computed at discrete times. When many varied solutions with different initial conditions to the ODE are required, the computational cost can become significant. We propose that a neural network be used as a solution bundle, a collection of solutions to an ODE for various initial states and system parameters. The neural network solution bundle is trained with an unsupervised loss that does not require any prior knowledge of the sought solutions, and the resulting object is differentiable in initial conditions and system parameters. The solution bundle exhibits fast, parallelizable evaluation of the system state, facilitating the use of Bayesian inference for parameter estimation in real dynamical systems.
The conventional technique for solving the equations of quantum chemistry (of solid state) is extended unconventionally to the structures possessing certain symmetries. This proposal concerns changing the way for selection of occupied orbitals, allow ing, in turn, to release the unoccupied electronic states located lower than the ground state Fermi level of a specific system. Such states can be treated as spectral holes. Application of this technique, in particular, when calculating the electronic structure of the HTSC-compound $YBa_2Cu_3O_{7-x}$ (0<x<1) results in the following. The spectral holes of high spatial localization are found. These spatial spectral holes are located, mainly at the $P_y$-orbitals of the apex oxygens. These orbitals overlap and form linear chains which are parallel to the known Cu(1)-O chains, disappearing when x is closed to 1. One can suppose that the linear chains of the overlapping hole states form a superconducting channel. Some other parameters closely related to the critical characteristics of HTSC-materials are also calculated. The calculations show that the superconducting channel is broken when the oxygen chain atoms O(1) are removed (x>0). One could easily connect the obtained results to the high-temperature superconductivity of Littles linear chains, as well as Ginzburgs two-dimensional layers and even to BCS-model.
We present modifications to the Athena++ framework to enable use of general equations of state (EOS). Part of our motivation for doing so is to model transient astrophysics phenomena, as these types of events are often not well approximated by an ide al gas. This necessitated changes to the Riemann solvers implemented in Athena++. We discuss the adjustments made to the HLLC, and HLLD solvers and EOS calls required for arbitrary EOS. We demonstrate the reliability of our code in a number of tests which utilize a relatively simple, but non-trivial EOS based on hydrogen ionization, appropriate for the transition from atomic to ionized hydrogen. Additionally, we perform tests using an electron-positron Helmholtz EOS, appropriate for regimes where nuclear statistical equilibrium is a good approximation. These new complex EOS tests overall show that our modifications to Athena++ accurately solve the Riemann problem with linear convergence and linear-wave tests with quadratic convergence. We provide our test solutions as a means to check the accuracy of other hydrodynamic codes. Our tests and additions to Athena++ will enable further research into (magneto)hydrodynamic problems where realistic treatments of the EOS are required.
83 - Xingyu Su , Weiqi Ji , Long Zhang 2021
Monitoring the dynamics processes in combustors is crucial for safe and efficient operations. However, in practice, only limited data can be obtained due to limitations in the measurable quantities, visualization window, and temporal resolution. This work proposes an approach based on neural differential equations to approximate the unknown quantities from available sparse measurements. The approach tackles the challenges of nonlinearity and the curse of dimensionality in inverse modeling by representing the dynamic signal using neural network models. In addition, we augment physical models for combustion with neural differential equations to enable learning from sparse measurements. We demonstrated the inverse modeling approach in a model combustor system by simulating the oscillation of an industrial combustor with a perfectly stirred reactor. Given the sparse measurements of the temperature inside the combustor, upstream fluctuations in compositions and/or flow rates can be inferred. Various types of fluctuations in the upstream, as well as the responses in the combustor, were synthesized to train and validate the algorithm. The results demonstrated that the approach can efficiently and accurately infer the dynamics of the unknown inlet boundary conditions, even without assuming the types of fluctuations. Those demonstrations shall open a lot of opportunities in utilizing neural differential equations for fault diagnostics and model-based dynamic control of industrial power systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا