ﻻ يوجد ملخص باللغة العربية
We present modifications to the Athena++ framework to enable use of general equations of state (EOS). Part of our motivation for doing so is to model transient astrophysics phenomena, as these types of events are often not well approximated by an ideal gas. This necessitated changes to the Riemann solvers implemented in Athena++. We discuss the adjustments made to the HLLC, and HLLD solvers and EOS calls required for arbitrary EOS. We demonstrate the reliability of our code in a number of tests which utilize a relatively simple, but non-trivial EOS based on hydrogen ionization, appropriate for the transition from atomic to ionized hydrogen. Additionally, we perform tests using an electron-positron Helmholtz EOS, appropriate for regimes where nuclear statistical equilibrium is a good approximation. These new complex EOS tests overall show that our modifications to Athena++ accurately solve the Riemann problem with linear convergence and linear-wave tests with quadratic convergence. We provide our test solutions as a means to check the accuracy of other hydrodynamic codes. Our tests and additions to Athena++ will enable further research into (magneto)hydrodynamic problems where realistic treatments of the EOS are required.
The design and implementation of a new framework for adaptive mesh refinement (AMR) calculations is described. It is intended primarily for applications in astrophysical fluid dynamics, but its flexible and modular design enables its use for a wide v
We present a co-scaling grid formalism and its implementation in the magnetohydrodynamics code Athena++. The formalism relies on flow symmetries in astrophysical problems involving expansion, contraction, and center-of-mass motion. The grid is evolve
We make a brief historical review to the moment model reduction to the kinetic equations, particularly the Grads moment method for Boltzmann equation. The focus is on the hyperbolicity of the reduced model, which is essential to the existence of its
The numerical solution of relativistic hydrodynamics equations in conservative form requires root-finding algorithms that invert the conservative-to-primitive variables map. These algorithms employ the equation of state of the fluid and can be comput
Performing a stable, long duration simulation of driven MHD turbulence with a high thermal Mach number and a strong initial magnetic field is a challenge to high-order Godunov ideal MHD schemes because of the difficulty in guaranteeing positivity of