ﻻ يوجد ملخص باللغة العربية
Discretized Langevin diffusions are efficient Monte Carlo methods for sampling from high dimensional target densities that are log-Lipschitz-smooth and (strongly) log-concave. In particular, the Euclidean Langevin Monte Carlo sampling algorithm has received much attention lately, leading to a detailed understanding of its non-asymptotic convergence properties and of the role that smoothness and log-concavity play in the convergence rate. Distributions that do not possess these regularity properties can be addressed by considering a Riemannian Langevin diffusion with a metric capturing the local geometry of the log-density. However, the Monte Carlo algorithms derived from discretizations of such Riemannian Langevin diffusions are notoriously difficult to analyze. In this paper, we consider Langevin diffusions on a Hessian-type manifold and study a discretization that is closely related to the mirror-descent scheme. We establish for the first time a non-asymptotic upper-bound on the sampling error of the resulting Hessian Riemannian Langevin Monte Carlo algorithm. This bound is measured according to a Wasserstein distance induced by a Riemannian metric ground cost capturing the Hessian structure and closely related to a self-concordance-like condition. The upper-bound implies, for instance, that the iterates contract toward a Wasserstein ball around the target density whose radius is made explicit. Our theory recovers existing Euclidean results and can cope with a wide variety of Hessian metrics related to highly non-flat geometries.
A new (unadjusted) Langevin Monte Carlo (LMC) algorithm with improved rates in total variation and in Wasserstein distance is presented. All these are obtained in the context of sampling from a target distribution $pi$ that has a density $hat{pi}$ on
The classical Langevin Monte Carlo method looks for samples from a target distribution by descending the samples along the gradient of the target distribution. The method enjoys a fast convergence rate. However, the numerical cost is sometimes high b
Langevin Monte Carlo (LMC) is a popular Markov chain Monte Carlo sampling method. One drawback is that it requires the computation of the full gradient at each iteration, an expensive operation if the dimension of the problem is high. We propose a ne
The Underdamped Langevin Monte Carlo (ULMC) is a popular Markov chain Monte Carlo sampling method. It requires the computation of the full gradient of the log-density at each iteration, an expensive operation if the dimension of the problem is high.
Sampling from a log-concave distribution function is one core problem that has wide applications in Bayesian statistics and machine learning. While most gradient free methods have slow convergence rate, the Langevin Monte Carlo (LMC) that provides fa