ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbo-Aggregate: Breaking the Quadratic Aggregation Barrier in Secure Federated Learning

86   0   0.0 ( 0 )
 نشر من قبل Jinhyun So
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning is a distributed framework for training machine learning models over the data residing at mobile devices, while protecting the privacy of individual users. A major bottleneck in scaling federated learning to a large number of users is the overhead of secure model aggregation across many users. In particular, the overhead of the state-of-the-art protocols for secure model aggregation grows quadratically with the number of users. In this paper, we propose the first secure aggregation framework, named Turbo-Aggregate, that in a network with $N$ users achieves a secure aggregation overhead of $O(Nlog{N})$, as opposed to $O(N^2)$, while tolerating up to a user dropout rate of $50%$. Turbo-Aggregate employs a multi-group circular strategy for efficient model aggregation, and leverages additive secret sharing and novel coding techniques for injecting aggregation redundancy in order to handle user dropouts while guaranteeing user privacy. We experimentally demonstrate that Turbo-Aggregate achieves a total running time that grows almost linear in the number of users, and provides up to $40times$ speedup over the state-of-the-art protocols with up to $N=200$ users. Our experiments also demonstrate the impact of model size and bandwidth on the performance of Turbo-Aggregate.

قيم البحث

اقرأ أيضاً

Secure aggregation is a critical component in federated learning, which enables the server to learn the aggregate model of the users without observing their local models. Conventionally, secure aggregation algorithms focus only on ensuring the privac y of individual users in a single training round. We contend that such designs can lead to significant privacy leakages over multiple training rounds, due to partial user selection/participation at each round of federated learning. In fact, we empirically show that the conventional random user selection strategies for federated learning lead to leaking users individual models within number of rounds linear in the number of users. To address this challenge, we introduce a secure aggregation framework with multi-round privacy guarantees. In particular, we introduce a new metric to quantify the privacy guarantees of federated learning over multiple training rounds, and develop a structured user selection strategy that guarantees the long-term privacy of each user (over any number of training rounds). Our framework also carefully accounts for the fairness and the average number of participating users at each round. We perform several experiments on MNIST and CIFAR-10 datasets in the IID and the non-IID settings to demonstrate the performance improvement over the baseline algorithms, both in terms of privacy protection and test accuracy.
Federated learning enables a global machine learning model to be trained collaboratively by distributed, mutually non-trusting learning agents who desire to maintain the privacy of their training data and their hardware. A global model is distributed to clients, who perform training, and submit their newly-trained model to be aggregated into a superior model. However, federated learning systems are vulnerable to interference from malicious learning agents who may desire to prevent training or induce targeted misclassification in the resulting global model. A class of Byzantine-tolerant aggregation algorithms has emerged, offering varying degrees of robustness against these attacks, often with the caveat that the number of attackers is bounded by some quantity known prior to training. This paper presents Simeon: a novel approach to aggregation that applies a reputation-based iterative filtering technique to achieve robustness even in the presence of attackers who can exhibit arbitrary behaviour. We compare Simeon to state-of-the-art aggregation techniques and find that Simeon achieves comparable or superior robustness to a variety of attacks. Notably, we show that Simeon is tolerant to sybil attacks, where other algorithms are not, presenting a key advantage of our approach.
Federated learning enables one to train a common machine learning model across separate, privately-held datasets via distributed model training. During federated training, only intermediate model parameters are transmitted to a central server which a ggregates these parameters to create a new common model, thus exposing only intermediate parameters rather than the training data itself. However, some attacks (e.g. membership inference) are able to infer properties of local data from these intermediate model parameters. Hence, performing the aggregation of these client-specific model parameters in a secure way is required. Additionally, the communication cost is often the bottleneck of the federated systems, especially for large neural networks. So, limiting the number and the size of communications is necessary to efficiently train large neural architectures. In this article, we present an efficient and secure protocol for performing secure aggregation over compressed model updates in the context of collaborative, few-party federated learning, a context common in the medical, healthcare, and biotechnical use-cases of federated systems. By making compression-based federated techniques amenable to secure computation, we develop a secure aggregation protocol between multiple servers with very low communication and computation costs and without preprocessing overhead. Our experiments demonstrate the efficiency of this new approach for secure federated training of deep convolutional neural networks.
For model privacy, local model parameters in federated learning shall be obfuscated before sent to the remote aggregator. This technique is referred to as emph{secure aggregation}. However, secure aggregation makes model poisoning attacks such backdo oring more convenient considering that existing anomaly detection methods mostly require access to plaintext local models. This paper proposes SAFELearning which supports backdoor detection for secure aggregation. We achieve this through two new primitives - emph{oblivious random grouping (ORG)} and emph{partial parameter disclosure (PPD)}. ORG partitions participants into one-time random subgroups with group configurations oblivious to participants; PPD allows secure partial disclosure of aggregated subgroup models for anomaly detection without leaking individual model privacy. SAFELearning can significantly reduce backdoor model accuracy without jeopardizing the main task accuracy under common backdoor strategies. Extensive experiments show SAFELearning is robust against malicious and faulty participants, whilst being more efficient than the state-of-art secure aggregation protocol in terms of both communication and computation costs.
We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds. We adapt the Bayesian privacy accounting method to the federated setting and suggest multiple improvements for more efficient privacy budgeting at different levels. Our experiments show significant advantage over the state-of-the-art differential privacy bounds for federated learning on image classification tasks, including a medical application, bringing the privacy budget below 1 at the client level, and below 0.1 at the instance level. Lower amounts of noise also benefit the model accuracy and reduce the number of communication rounds.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا