ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Gated Networks: A framework to understand training and generalisation in deep learning

98   0   0.0 ( 0 )
 نشر من قبل Chandrashekar Lakshminarayanan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the role of (stochastic) gradient descent (SGD) in the training and generalisation of deep neural networks (DNNs) with ReLU activation has been the object study in the recent past. In this paper, we make use of deep gated networks (DGNs) as a framework to obtain insights about DNNs with ReLU activation. In DGNs, a single neuronal unit has two components namely the pre-activation input (equal to the inner product the weights of the layer and the previous layer outputs), and a gating value which belongs to $[0,1]$ and the output of the neuronal unit is equal to the multiplication of pre-activation input and the gating value. The standard DNN with ReLU activation, is a special case of the DGNs, wherein the gating value is $1/0$ based on whether or not the pre-activation input is positive or negative. We theoretically analyse and experiment with several variants of DGNs, each variant suited to understand a particular aspect of either training or generalisation in DNNs with ReLU activation. Our theory throws light on two questions namely i) why increasing depth till a point helps in training and ii) why increasing depth beyond a point hurts training? We also present experimental evidence to show that gate adaptation, i.e., the change of gating value through the course of training is key for generalisation.



قيم البحث

اقرأ أيضاً

Deep neural networks have yielded superior performance in many applications; however, the gradient computation in a deep model with millions of instances lead to a lengthy training process even with modern GPU/TPU hardware acceleration. In this paper , we propose AutoAssist, a simple framework to accelerate training of a deep neural network. Typically, as the training procedure evolves, the amount of improvement in the current model by a stochastic gradient update on each instance varies dynamically. In AutoAssist, we utilize this fact and design a simple instance shrinking operation, which is used to filter out instances with relatively low marginal improvement to the current model; thus the computationally intensive gradient computations are performed on informative instances as much as possible. We prove that the proposed technique outperforms vanilla SGD with existing importance sampling approaches for linear SVM problems, and establish an O(1/k) convergence for strongly convex problems. In order to apply the proposed techniques to accelerate training of deep models, we propose to jointly train a very lightweight Assistant network in addition to the original deep network referred to as Boss. The Assistant network is designed to gauge the importance of a given instance with respect to the current Boss such that a shrinking operation can be applied in the batch generator. With careful design, we train the Boss and Assistant in a nonblocking and asynchronous fashion such that overhead is minimal. We demonstrate that AutoAssist reduces the number of epochs by 40% for training a ResNet to reach the same test accuracy on an image classification data set and saves 30% training time needed for a transformer model to yield the same BLEU scores on a translation dataset.
The success of deep learning in the computer vision and natural language processing communities can be attributed to training of very deep neural networks with millions or billions of parameters which can then be trained with massive amounts of data. However, similar trend has largely eluded training of deep reinforcement learning (RL) algorithms where larger networks do not lead to performance improvement. Previous work has shown that this is mostly due to instability during training of deep RL agents when using larger networks. In this paper, we make an attempt to understand and address training of larger networks for deep RL. We first show that naively increasing network capacity does not improve performance. Then, we propose a novel method that consists of 1) wider networks with DenseNet connection, 2) decoupling representation learning from training of RL, 3) a distributed training method to mitigate overfitting problems. Using this three-fold technique, we show that we can train very large networks that result in significant performance gains. We present several ablation studies to demonstrate the efficacy of the proposed method and some intuitive understanding of the reasons for performance gain. We show that our proposed method outperforms other baseline algorithms on several challenging locomotion tasks.
89 - Huihui Zhang , Wu Huang 2020
In recent years deep neural networks have been successfully applied to the domains of reinforcement learning cite{bengio2009learning,krizhevsky2012imagenet,hinton2006reducing}. Deep reinforcement learning cite{mnih2015human} is reported to have the a dvantage of learning effective policies directly from high-dimensional sensory inputs over traditional agents. However, within the scope of the literature, there is no fundamental change or improvement on the existing training framework. Here we propose a novel training framework that is conceptually comprehensible and potentially easy to be generalized to all feasible algorithms for reinforcement learning. We employ Monte-carlo sampling to achieve raw data inputs, and train them in batch to achieve Markov decision process sequences and synchronously update the network parameters instead of experience replay. This training framework proves to optimize the unbiased approximation of loss function whose estimation exactly matches the real probability distribution data inputs follow, and thus have overwhelming advantages of sample efficiency and convergence rate over existing deep reinforcement learning after evaluating it on both discrete action spaces and continuous control problems. Besides, we propose several algorithms embedded with our new framework to deal with typical discrete and continuous scenarios. These algorithms prove to be far more efficient than their origin
Todays deep learning models are primarily trained on CPUs and GPUs. Although these models tend to have low error, they consume high power and utilize large amount of memory owing to double precision floating point learning parameters. Beyond the Moor es law, a significant portion of deep learning tasks would run on edge computing systems, which will form an indispensable part of the entire computation fabric. Subsequently, training deep learning models for such systems will have to be tailored and adopted to generate models that have the following desirable characteristics: low error, low memory, and low power. We believe that deep neural networks (DNNs), where learning parameters are constrained to have a set of finite discrete values, running on neuromorphic computing systems would be instrumental for intelligent edge computing systems having these desirable characteristics. To this extent, we propose the Combinatorial Neural Network Training Algorithm (CoNNTrA), that leverages a coordinate gradient descent-based approach for training deep learning models with finite discrete learning parameters. Next, we elaborate on the theoretical underpinnings and evaluate the computational complexity of CoNNTrA. As a proof of concept, we use CoNNTrA to train deep learning models with ternary learning parameters on the MNIST, Iris and ImageNet data sets and compare their performance to the same models trained using Backpropagation. We use following performance metrics for the comparison: (i) Training error; (ii) Validation error; (iii) Memory usage; and (iv) Training time. Our results indicate that CoNNTrA models use 32x less memory and have errors at par with the Backpropagation models.
Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond ones experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between hand-engineering and end-to-end learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا