ﻻ يوجد ملخص باللغة العربية
Understanding the role of (stochastic) gradient descent (SGD) in the training and generalisation of deep neural networks (DNNs) with ReLU activation has been the object study in the recent past. In this paper, we make use of deep gated networks (DGNs) as a framework to obtain insights about DNNs with ReLU activation. In DGNs, a single neuronal unit has two components namely the pre-activation input (equal to the inner product the weights of the layer and the previous layer outputs), and a gating value which belongs to $[0,1]$ and the output of the neuronal unit is equal to the multiplication of pre-activation input and the gating value. The standard DNN with ReLU activation, is a special case of the DGNs, wherein the gating value is $1/0$ based on whether or not the pre-activation input is positive or negative. We theoretically analyse and experiment with several variants of DGNs, each variant suited to understand a particular aspect of either training or generalisation in DNNs with ReLU activation. Our theory throws light on two questions namely i) why increasing depth till a point helps in training and ii) why increasing depth beyond a point hurts training? We also present experimental evidence to show that gate adaptation, i.e., the change of gating value through the course of training is key for generalisation.
Deep neural networks have yielded superior performance in many applications; however, the gradient computation in a deep model with millions of instances lead to a lengthy training process even with modern GPU/TPU hardware acceleration. In this paper
The success of deep learning in the computer vision and natural language processing communities can be attributed to training of very deep neural networks with millions or billions of parameters which can then be trained with massive amounts of data.
In recent years deep neural networks have been successfully applied to the domains of reinforcement learning cite{bengio2009learning,krizhevsky2012imagenet,hinton2006reducing}. Deep reinforcement learning cite{mnih2015human} is reported to have the a
Todays deep learning models are primarily trained on CPUs and GPUs. Although these models tend to have low error, they consume high power and utilize large amount of memory owing to double precision floating point learning parameters. Beyond the Moor
Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the