ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-triplet pairing state evidenced by half-quantum flux in a noncentrosymmetric superconductor

223   0   0.0 ( 0 )
 نشر من قبل Xiaoying Xu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A prime category of superconducting materials in which to look for spin-triplet pairing and topological superconductivity are superconductors without inversion symmetry. It is predicted that the breaking of parity symmetry gives rise to an admixture of spin-singlet / spin-triplet pairing states; a triplet pairing component, being substantial, seems all but guaranteed. However, the experimental confirmation of pair mixing in any particular material remains elusive. In this work, we perform phase-sensitive experiment to examine the pairing state of noncentrosymmetric superconductor $alpha-$BiPd. The Little-Parks effect observed in mesoscopic polycrystalline $alpha-$BiPd ring devices reveals the presence of half-integer magnetic flux quantization, which provides a decisive evidence for the spin-triplet pairing state. We find mixed half-quantum fluxes and integer-quantum fluxes, consistent with the scenario of singlet-triplet pair mixing.



قيم البحث

اقرأ أيضاً

We have studied the proximity-induced superconducting triplet pairing in CoO$_x$/Py1/Cu/Py2/Cu/Pb spin-valve structure (where Py = Ni$_{0.81}$Fe$_{0.19}$). By optimizing the parameters of this structure we found a triplet channel assisted full switch ing between the normal and superconducting states. To observe an isolated triplet spin-valve effect we exploited the oscillatory feature of the magnitude of the ordinary spin-valve effect $Delta T_c$ in the dependence of the Py2-layer thickness $d_{Py2}$. We determined the value of $d_{Py2}$ at which $Delta T_c$ caused by the ordinary spin-valve effect (the difference in the superconducting transition temperature $T_c$ between the antiparallel and parallel mutual orientation of magnetizations of the Py1 and Py2 layers) is suppressed. For such a sample a pure triplet spin-valve effect which causes the minimum in $T_c$ at the orthogonal configuration of magnetizations has been observed.
We report the measurements of the $^{29}$Si Knight shift $^{29}K$ on the noncentrosymmetric heavy-fermion compound CePt$_{3}$Si in which antiferromagnetism (AFM) with $T_{rm N}=2.2$ K coexists with superconductivity (SC) with $T_{c}=0.75$ K. Its spin part $^{29}K_{rm s}$, which is deduced to be $K_{rm s}^{c}ge 0.11$ and 0.16% at respective magnetic fields $H=2.0061$ and 0.8671 T, does not decrease across the superconducting transition temperature $T_{c}$ for the field along the c-axis. The temperature dependence of nuclear spin-lattice relaxation of $^{195}$Pt below $T_{c}$ has been accounted for by a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. From this result, it is shown that the Knight-shift data are consistent with the occurrence of the two-component order parameter for CePt$_{3}$Si.
We report on the observation of bulk superconductivity from dc magnetization measurements in a cylindrical single crystal of CuxBi2Se3. The magnitude of the magnetization in the Meissner state is very small and the magnetic-field dependence of the ma gnetization just above the lower critical field Hc1 is very different from those of usual type-II superconductors. We studied the character of the vortex state theoretically in a spin-triplet pairing superconductor and compared it with the experimental results. The results showed that, the superconductivity observed in CuxBi2Se3 is consistent with the spin-triplet pairing superconductivity with odd parity. We also observed a rapid relaxation phenomenon of the superconducting diamagnetism.
We report superconductivity in the ternary half-Heusler compound LuPtBi, with Tc = 1.0 K and Hc2 = 1.6 T. The crystal structure of LuPtBi lacks inversion symmetry, hence the material is a noncentrosymmetric superconductor. Magnetotransport data show semimetallic behavior in the normal state, which is evidence for the importance of spin-orbit interaction. Theoretical calculations indicate that the strong spin-orbit interaction in LuPtBi should cause strong band inversion, making this material a promising candidate for 3D topological superconductivity.
We apply the scattering matrix approach to the triplet proximity effect in superconductor-half metal structures. We find that for junctions that do not mix different orbital modes, the zero bias Andreev conductance vanishes, while the zero bias Josep hson current is nonzero. We illustrate this finding on a ballistic half-metal--superconductor (HS) and superconductor -- half-metal -- superconductor (SHS) junction with translation invariance along the interfaces, and on HS and SHS systems where transport through the half-metallic region takes place through a single conducting channel. Our calculations for these physically single mode setups -- single mode point contacts and chaotic quantum dots with single mode contacts -- illustrate the main strength of the scattering matrix approach: it allows for studying systems in the quantum mechanical limit, which is inaccessible for quasiclassical Greens function methods, the main theoretical tool in previous works on the triplet proximity effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا