ترغب بنشر مسار تعليمي؟ اضغط هنا

A 5deg x 5deg deep HI survey of the M81 group: II. HI distribution and kinematics of IC 2574 and HIJASS J1021+68

303   0   0.0 ( 0 )
 نشر من قبل Amidou Sorgho
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the eastern region of a $5^circtimes5^circ$ deep HI survey of the M81 group containing the dwarf galaxy IC 2574 and the HI complex HIJASS J1021+68, located between the dwarf and the M81 system. The data show that IC 2574 has an extended HI envelope that connects to HIJASS J1021+68 in the form of a collection of small clouds, but no evident connection has been found between IC 2574 and the central members of the M81 group. We argue, based on the morphology of the clouds forming HIJASS J1021+68 and its velocity distribution, that the complex is not a dark galaxy as previously suggested, but is instead a complex of clouds either stripped from, or falling onto the primordial HI envelope of IC 2574. We also use the deep HI observations to map the extended HI envelope around IC 2574 and, using a 3D tilted-ring model, we derive the rotation curve of the galaxy to a larger extent than has been done before. Combining the obtained rotation curve to higher resolution curves from the literature, we constrain the galaxys dark matter halo parameters.



قيم البحث

اقرأ أيضاً

132 - P. J. Boyce 2001
Results are presented of the first blind HI survey of the M81 group of galaxies. The data were taken as part of the HI Jodrell All Sky Survey (HIJASS). The survey reveals several new aspects to the complex morphology of the HI distribution in the gro up. All four of the known dwarf irregular (dIrr) galaxies close to M81 can be unambiguously seen in the HIJASS data. Each forms part of the complex tidal structure in the area. We suggest that at least three of these galaxies may have formed recently from the tidal debris in which they are embedded. The structure connecting M81 to NGC2976 is revealed as a single tidal bridge of mass approx. 2.1 x 10^8 Msol and projected spatial extent approx. 80 kpc. Two `spurs of HI projecting from the M81 complex to lower declinations are traced over a considerably larger spatial and velocity extent than by previous surveys. The dwarf elliptical (dE) galaxies BK5N and Kar 64 lie at the spatial extremity of one of these features and appear to be associated with it. We suggest that these may be the remnants of dIrrs which has been stripped of gas and transmuted into dEs by close gravitational encounters with NGC3077. The nucleated dE galaxy Kar 61 is unambiguously detected in HI for the first time and has an HI mass of approx.10^8 Msol, further confirming it as a dE/dIrr transitional object. HIJASS has revealed one new possible group member, HIJASS J1021+6842. This object contains approx. 2 x 10^7 Msol of HI and lies approx.105arcmin from IC2574. It has no optical counterpart on the Digital Sky Survey.
74 - K. A. Lutz 2018
By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-r ich. We model the HI kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model Dark Sage. We find that (1) HI discs in HIX galaxies are more likely to be warped and more likely to host HI arms and tails than in the control galaxies, (2) the average HI and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher HI and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are HI-rich because they can support more HI against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The HI content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.
We present the results of a deep survey of the nearby Sculptor group and the associated Sculptor filament taken with the Parkes 64-m radio telescope in the 21-cm emission line of neutral hydrogen. We detect 31 HI sources in the Sculptor group/filamen t, eight of which are new HI detections. We derive a slope of the HI mass function along the Sculptor filament of $alpha = -1.10^{+0.20}_{-0.11}$, which is significantly flatter than the global mass function and consistent with the flat slopes previously found in other low-density group environments. Some physical process, such as star formation, photoionisation or ram-pressure stripping, must therefore be responsible for removing neutral gas predominantly from low-mass galaxies. All of our HI detections have a confirmed or tentative optical counterpart and are likely associated with luminous rather than dark galaxies. Despite a column density sensitivity of about $4 times 10^{17}~mathrm{cm}^{-2}$, we do not find any traces of extragalactic gas or tidal streams, suggesting that the Sculptor filament is, at the current time, a relatively quiescent environment that has not seen any recent major interactions or mergers.
A new deep HI survey of the galaxy Messier 33 is presented, based on observations obtained at the Dominion Radio Astrophysical Observatory. We observe a perturbed outer gas distribution and kinematics in M33, and confirm the disk warping as a signifi cant kinematical twist of the major axis of the velocity field, though no strong tilt is measured, in agreement with previous work. Evidence for a new low brightness HI component with anomalous velocity is reported. It harbours a large velocity scatter, as its kinematics both exceeds and lags the rotation of the disk, and leaks in the forbidden velocity zone of apparent counter-rotation. The observations also reveal wide and multiple peak HI profiles which can be partly explained by crowded orbits in the framework of the warp model. Asymmetric motions are identified in the velocity field, as possible signatures of a lopsided potential and the warp. The mass distribution modeling of the hybrid Halpha-HI rotation curve favours a cuspy dark matter halo with a concentration in disagreement with the LambdaCDM dark halo mass-concentration relationship. The total mass enclosed in 23 kpc is 8 10^10 Msol, of which 11% are stars and gas. At the virial radius of the cuspy halo, the resulting total mass is 5 10^11 Msol, but with a baryonic mass fraction of 2% only. This strongly suggests a more realistic radius encompassing the total mass of M33 well smaller than the virial radius of the halo, maybe comparable to the size of the HI disk.
We present HI imaging of the galaxy group IC 1459 carried out with six antennas of the Australian SKA Pathfinder equipped with phased-array feeds. We detect and resolve HI in eleven galaxies down to a column density of $sim10^{20}$ cm$^{-2}$ inside a ~6 deg$^2$ field and with a resolution of ~1 arcmin on the sky and ~8 km/s in velocity. We present HI images, velocity fields and integrated spectra of all detections, and highlight the discovery of three HI clouds -- two in the proximity of the galaxy IC 5270 and one close to NGC 7418. Each cloud has an HI mass of $10^9$ M$_odot$ and accounts for ~15% of the HI associated with its host galaxy. Available images at ultraviolet, optical and infrared wavelengths do not reveal any clear stellar counterpart of any of the clouds, suggesting that they are not gas-rich dwarf neighbours of IC 5270 and NGC 7418. Using Parkes data we find evidence of additional extended, low-column-density HI emission around IC 5270, indicating that the clouds are the tip of the iceberg of a larger system of gas surrounding this galaxy. This result adds to the body of evidence on the presence of intra-group gas within the IC 1459 group. Altogether, the HI found outside galaxies in this group amounts to several times $10^9$ M$_odot$, at least 10% of the HI contained inside galaxies. This suggests a substantial flow of gas in and out of galaxies during the several billion years of the groups evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا