ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron Spin Resonance spectroscopy with femtoliter detection volume

74   0   0.0 ( 0 )
 نشر من قبل Vishal Ranjan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report electron spin resonance measurements of donors in silicon at millikelvin temperatures using a superconducting $LC$ planar micro-resonator and a Josephson Parametric Amplifier. The resonator includes a nanowire inductor, defining a femtoliter detection volume. Due to strain in the substrate, the donor resonance lines are heavily broadened. Single-spin to photon coupling strengths up to $sim 3~text{kHz}$ are observed. The single shot sensitivity is $120 pm 24~$spins/Hahn echo, corresponding to $approx 12 pm 3$~spins$/sqrt{text{Hz}}$ for repeated acquisition.



قيم البحث

اقرأ أيضاً

We report electron spin resonance spectroscopy measurements performed at millikelvin temperatures in a custom-built spectrometer comprising a superconducting micro-resonator at $7$ GHz and a Josephson parametric amplifier. Owing to the small ${sim}10 ^{-12}lambda^3$ magnetic resonator mode volume and to the low noise of the parametric amplifier, the spectrometer sensitivity reaches $260pm40$ spins$/$echo and $65pm10$ $mathrm{spins}/sqrt{text{Hz}}$, respectively.
We report the nanoscale spin detection and electron paramagnetic resonance (EPR) spectrum of copper (Cu$^{2+}$) ions via double electron-electron resonance with single spins in diamond at room temperature and low magnetic fields. We measure unexpecte dly narrow EPR resonances with linewidths $sim 2-3$ MHz from copper-chloride molecules dissolved in poly-lysine. We also observe coherent Rabi oscillations and hyperfine splitting from single Cu$^{2+}$ ions, which could be used for dynamic nuclear spin polarization and higher sensitivity of spin detection. We interpret and analyze these observations using both spin hamiltonian modeling of the copper-chloride molecules and numerical simulations of the predicted DEER response, and obtain a sensing volume $sim (250 text{nm})^3$. This work will open the door for copper-labeled EPR measurements under ambient conditions in bio-molecules and nano-materials.
181 - Y. Kubo , I. Diniz , C. Grezes 2012
A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated. It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-microwave-photon detector, resulting in an enhanced sensitivity. We implement this new type of electron-spin resonance spectroscopy using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting of NV centers in diamond. With this setup we measure the NV center absorption spectrum at 30mK at an excitation level of thicksim15,mu_{B} out of an ensemble of 10^{11} spins.
We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephson bifurcation amplifier, which leads to an inferred measurement s ensitivity of about 20 spins in a 1 s measurement. This sensitivity represents an order of magnitude improvement when compared with flux-qubit schemes using a dc-SQUID switching readout. Furthermore, noise spectroscopy reveals that the sensitivity is limited by flicker ($1/f$) flux noise.
Electron spin resonance (ESR) spectroscopy has broad applications in physics, chemistry and biology. As a complementary tool, zero-field ESR (ZF-ESR) spectroscopy has been proposed for decades and shown its own benefits for investigating the electron fine and hyperfine interaction. However, the ZF-ESR method has been rarely used due to the low sensitivity and the requirement of much larger samples than conventional ESR. In this work, we present a method for deploying ZF-ESR spectroscopy at the nanoscale by using a highly sensitive quantum sensor, the nitrogen-vacancy center in diamond. We also measure the nanoscale ZF-ESR spectrum of a few P1 centers in diamond, and show that the hyperfine coupling constant can be directly extracted from the spectrum. This method opens the door to practical applications of ZF-ESR spectroscopy, such as investigation of the structure and polarity information in spin-modified organic and biological systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا