ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce the definitions of signatures of braided fusion categories, which are proved to be invariants of their Witt equivalence classes. These signature assignments define group homomorphisms on the Witt group. The higher central charges of pseudounitary modular categories can be expressed in terms of these signatures, which are applied to prove that the Ising modular categories have infinitely many square roots in the Witt group. This result is further applied to prove a conjecture of Davydov-Nikshych-Ostrik on the super-Witt group: the torsion subgroup generated by the completely anisotropic s-simple braided fusion categories has infinite rank.
The definitions of the $n^{th}$ Gauss sum and the associated $n^{th}$ central charge are introduced for premodular categories $mathcal{C}$ and $ninmathbb{Z}$. We first derive an expression of the $n^{th}$ Gauss sum of a modular category $mathcal{C}$,
This is an account of the algebraic geometry of Witt vectors and arithmetic jet spaces. The usual, p-typical Witt vectors of p-adic schemes of finite type are already reasonably well understood. The main point here is to generalize this theory in two
A Virasoro central charge can be associated with each Nichols algebra with diagonal braiding in a way that is invariant under the Weyl groupoid action. The central charge takes very suggestive values for some items in Heckenbergers list of rank-2 Nic
We give a concrete description of the category of etale algebras over the ring of Witt vectors of a given finite length with entries in an arbitrary ring. We do this not only for the classical p-typical and big Witt vector functors but also for varia
We classify various types of graded extensions of a finite braided tensor category $cal B$ in terms of its $2$-categorical Picard groups. In particular, we prove that braided extensions of $cal B$ by a finite group $A$ correspond to braided monoidal