ﻻ يوجد ملخص باللغة العربية
We give a concrete description of the category of etale algebras over the ring of Witt vectors of a given finite length with entries in an arbitrary ring. We do this not only for the classical p-typical and big Witt vector functors but also for variants of these functors which are in a certain sense their analogues over arbitrary local and global fields. The basic theory of these generalized Witt vectors is developed from the point of view of commuting Frobenius lifts and their universal properties, which is a new approach even for the classical Witt vectors. The larger purpose of this paper is to provide the affine foundations for the algebraic geometry of generalized Witt schemes and arithmetic jet spaces. So the basics here are developed somewhat fully, with an eye toward future applications.
This is an account of the algebraic geometry of Witt vectors and arithmetic jet spaces. The usual, p-typical Witt vectors of p-adic schemes of finite type are already reasonably well understood. The main point here is to generalize this theory in two
We extend the big and $p$-typical Witt vector functors from commutative rings to commutative semirings. In the case of the big Witt vectors, this is a repackaging of some standard facts about monomial and Schur positivity in the combinatorics of symm
The subject matter of this paper is the geometry of the affine group over the integers, $mathsf{GL}(n,mathbb{Z})ltimes mathbb{Z}^n$. Turing-computable complete $mathsf{GL}(n,mathbb{Z})ltimes mathbb{Z}^n$-orbit invariants are constructed for angles,
In this paper, we introduce the definitions of signatures of braided fusion categories, which are proved to be invariants of their Witt equivalence classes. These signature assignments define group homomorphisms on the Witt group. The higher central
We give a $K$-theoretic account of the basic properties of Witt vectors. Along the way we re-prove basic properties of the little-known Witt vector norm, give a characterization of Witt vectors in terms of algebraic $K$-theory, and a presentation of the Witt vectors that is useful for computation.