ﻻ يوجد ملخص باللغة العربية
In silico materials design is hampered by the computational complexity of Kohn-Sham DFT, which scales cubically with the system size. Owing to the development of new-generation kinetic energy density functionals (KEDFs), orbital-free DFT (OFDFT, a linear-scaling method) can now be successfully applied to a large class of semiconductors and such finite systems as quantum dots and metal clusters. In this work, we present DFTpy, an open source software implementing OFDFT written entirely in Python 3 and outsourcing the computationally expensive operations to third-party modules, such as NumPy and SciPy. When fast simulations are in order, DFTpy exploits the fast Fourier transforms (FFTs) from PyFFTW. New-generation, nonlocal and density-dependent-kernel KEDFs are made computationally efficient by employing linear splines and other methods for fast kernel builds. We showcase DFTpy by solving for the electronic structure of a million-atom system of aluminum metal which was computed on a single CPU. The Python 3 implementation is object-oriented, opening the door to easy implementation of new features. As an example, we present a time-dependent OFDFT implementation (hydrodynamic DFT) which we use to compute the spectra of small metal cluster recovering qualitatively the time-dependent Kohn-Sham DFT result. The Python code base allows for easy implementation of APIs. We showcase the combination of DFTpy and ASE for molecular dynamics simulations (NVT) of liquid metals. DFTpy is released under the MIT license.
We present the One-orbital Ensemble Self-Consistent Field (OE-SCF) method, an {alternative} orbital-free DFT solver that extends the applicability of DFT to system sizes beyond the nanoscale while retaining the accuracy required to be predictive. OE-
Classical density-functional theory provides an efficient alternative to molecular dynamics simulations for understanding the equilibrium properties of inhomogeneous fluids. However, application of density-functional theory to multi-site molecular fl
The reliability of atomistic simulations depends on the quality of the underlying energy models providing the source of physical information, for instance for the calculation of migration barriers in atomistic Kinetic Monte Carlo simulations. Accurat
Recent developments in path integral methodology have significantly reduced the computational expense of including quantum mechanical effects in the nuclear motion in ab initio molecular dynamics simulations. However, the implementation of these deve
Orbital-free density functional theory (OF-DFT) is a promising method for large-scale quantum mechanics simulation as it provides a good balance of accuracy and computational cost. Its applicability to large-scale simulations has been aided by progre