ﻻ يوجد ملخص باللغة العربية
While reversibility is a fundamental concept in thermodynamics, most reactions are not readily reversible, especially in solid state physics. For example, thermal diffusion is a widely known concept, used among others to inject dopant atoms into the substitutional positions in the matrix and improve the device properties. Typically, such a diffusion process will create a concentration gradient extending over increasingly large regions, without possibility to reverse this effect. On the other hand, while the bottom up growth of semiconducting nanowires is interesting, it can still be difficult to fabricate axial heterostructures with high control. In this paper, we report a reversible thermal diffusion process occurring in the solid-state exchange reaction between an Al metal pad and a Si$_x$Ge$_{1-x}$ alloy nanowire observed by in-situ transmission electron microscopy. The thermally assisted reaction results in the creation of a Si-rich region sandwiched between the reacted Al and unreacted SixGe1-x part, forming an axial Al/Si/Si$_x$Ge$_{1-x}$ heterostructure. Upon heating or (slow) cooling, the Al metal can repeatably move in and out of the Si$_x$Ge$_{1-x}$ alloy nanowire while maintaining the rod-like geometry and crystallinity, allowing to fabricate and contact nanowire heterostructures in a reversible way in a single process step, compatible with current Si based technology. This interesting system is promising for various applications, such as phase change memories in an all crystalline system with integrated contacts, as well as Si/Si$_x$Ge$_{1-x}$/Si heterostructures for near-infrared sensing applications.
Strain engineering in Sn-rich group IV semiconductors is a key enabling factor to exploit the direct band gap at mid-infrared wavelengths. Here, we investigate the effect of strain on the growth of GeSn alloys in a Ge/GeSn core/shell nanowire geometr
The evolution of the thermopower EuCu{2}(Ge{1-x}Si{x}){2} intermetallics, which is induced by the Si-Ge substitution, is explained by the Kondo scattering of conduction electrons on the Eu ions which fluctuate between the magnetic 2+ and non-magnetic
Ceramic dual-phase oxygen transport membranes with the composition of 60wt.% Ce0.9Pr0.1O2-{delta}-40wt.%Pr0.6Sr0.4Fe1-xAlxO3-{delta} (x = 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0) (60CPO-40PSF1-xAxO) based on 60Ce0.9Pr0.1O2-{delta}-40Pr0.6Sr0.4FeO3-{d
A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (111) silicon substrates using the vapor-liquid-solid method by molecular beam epitaxy is reported. We develop an effective and mask-free method based on co
The search and exploration of new materials not found in nature is one of modern trends in pure and applied chemistry. In the present work, we report on experimental and textit{ab initio} density-functional study of the high-pressure-synthesized seri