We show the existence of $(epsilon,n)$-complements for $(epsilon,mathbb{R})$-complementary surface pairs when the coefficients of boundaries belong to a DCC set.
Let $Gamma$ be a finite set, and $X i x$ a fixed klt germ. For any lc germ $(X i x,B:=sum_{i} b_iB_i)$ such that $b_iin Gamma$, Nakamuras conjecture, which is equivalent to the ACC conjecture for minimal log discrepancies for fixed germs, predicts th
at there always exists a prime divisor $E$ over $X i x$, such that $a(E,X,B)={rm{mld}}(X i x,B)$, and $a(E,X,0)$ is bounded from above. We extend Nakamuras conjecture to the setting that $X i x$ is not necessarily fixed and $Gamma$ satisfies the DCC, and show it holds for surfaces. We also find some sufficient conditions for the boundedness of $a(E,X,0)$ for any such $E$.
We consider Gromovs homological higher convexity for complements of tropical varieties, establishing it for complements of tropical hypersurfaces and curves, and for nonarchimedean amoebas of varieties that are complete intersections over the field o
f complex Puiseaux series. Based on these results, we conjecture that the complement of a tropical variety has this higher convexity, and we prove a weak form of our conjecture for the nonarchimedean amoeba of a variety over the complex Puiseaux field. One of our main tools is Jonssons limit theorem for tropical varieties.
An important classification problem in Algebraic Geometry deals with pairs $(E,phi)$, consisting of a torsion free sheaf $E$ and a non-trivial homomorphism $phicolon (E^{otimes a})^{oplus b}lradet(E)^{otimes c}otimes L$ on a polarized complex project
ive manifold $(X,O_X(1))$, the input data $a$, $b$, $c$, $L$ as well as the Hilbert polynomial of $E$ being fixed. The solution to the classification problem consists of a family of moduli spaces ${cal M}^delta:={cal M}^{delta-rm ss}_{a/b/c/L/P}$ for the $delta$-semistable objects, where $deltainQ[x]$ can be any positive polynomial of degree at most $dim X-1$. In this note we show that there are only finitely many distinct moduli spaces among the ${cal M}^delta$ and that they sit in a chain of GIT-flips. This property has been known and proved by ad hoc arguments in several special cases. In our paper, we apply refined information on the instability flag to solve this problem. This strategy is inspired by the fundamental paper of Ramanan and Ramanathan on the instability flag.
Let $Omega$ be the complement of a connected, essential hyperplane arrangement. We prove that every dominant endomorphism of $Omega$ extends to an endomorphism of the tropical compactification $X$ of $Omega$ associated to the Bergman fan structure on
the tropicalization of $Omega$. This generalizes a previous result by Remy, Thuillier and the second author which states that every automorphism of Drinfelds half-space over a finite field $mathbb{F}_q$ extends to an automorphism of the successive blow-up of projective space at all $mathbb{F}_q$-rational linear subspaces. This successive blow-up is in fact the minimal wonderful compactification by de Concini and Procesi, which coincides with $X$ by results of Feichtner and Sturmfels. Whereas the previous proof is based on Berkovich analytic geometry over the trivially valued finite ground field, the generalization discussed in the present paper relies on matroids and tropical geometry.
The ACC conjecture for local volumes predicts that the set of local volumes of klt singularities $xin (X,Delta)$ satisfies the ACC if the coefficients of $Delta$ belong to a DCC set. In this paper, we prove the ACC conjecture for local volumes under
the assumption that the ambient germ is analytically bounded. We introduce another related conjecture, which predicts the existence of $delta$-plt blow-ups of a klt singularity whose local volume has a positive lower bound. We show that the latter conjecture also holds when the ambient germ is analytically bounded. Moreover, we prove that both conjectures hold in dimension 2 as well as for 3-dimensional terminal singularities.