ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating shear flow through continuum gyrokinetic simulations of limiter biasing in the Texas Helimak

109   0   0.0 ( 0 )
 نشر من قبل Tess Bernard
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous limiter-biasing experiments on the Texas Helimak, a simple magnetized torus, have been inconclusive on the effect of flow shear on turbulence levels. To investigate this, the first gyrokinetic simulations of limiter biasing in the Helimak using the plasma physics code Gkeyll have been carried out, and results are presented here. For the scenarios considered, turbulence is mostly driven by the interchange instability, which depends on gradients of equilibrium density profiles. An analysis of both experimental and simulation data demonstrates that shear rates are mostly less than than local linear growth rates, and not all requirements for shear stabilization are met. Rather, the mostly vertical shear flow has an important effect on bulk transport and experimental equilibrium density profiles, and changes to the gradients correspond to changes in turbulence levels.



قيم البحث

اقرأ أيضاً

The first gyrokinetic simulations of plasma turbulence in the Texas Helimak device, a simple magnetized torus, are presented. The device has features similar to the scrape-off layer region of tokamaks, such as bad-curvature-driven instabilities and s heath boundary conditions on the end plates, which are included in these simulations. Comparisons between simulations and measurements from the experiment show similarities, including equilibrium profiles and fluctuation amplitudes that approach experimental values, but also some important quantitative differences. Both experimental and simulation results exhibit turbulence statistics that are characteristic of blob transport.
Linear gyrokinetic simulations covering the collisional -- collisionless transitional regime of the tearing instability are performed. It is shown that the growth rate scaling with collisionality agrees well with that predicted by a two-fluid theory for a low plasma beta case in which ion kinetic dynamics are negligible. Electron wave-particle interactions (Landau damping), finite Larmor radius, and other kinetic effects invalidate the fluid theory in the collisionless regime, in which a general non-polytropic equation of state for pressure (temperature) perturbations should be considered. We also vary the ratio of the background ion to electron temperatures, and show that the scalings expected from existing calculations can be recovered, but only in the limit of very low beta.
89 - E. L. Shi 2017
The properties of the boundary plasma in a tokamak are now recognized to play a key role in determining the achievable fusion power and the lifetimes of plasma-facing components. Accurate quantitative modeling and improved qualitative understanding o f the boundary plasma ultimately require five-dimensional gyrokinetic turbulence simulations, which have been successful in predicting turbulence and transport in the core. The additional challenges of boundary-plasma simulation necessitate the development of new gyrokinetic codes or major modifications to existing core gyrokinetic codes. In this thesis, we develop the first gyrokinetic continuum code capable of simulating plasma turbulence on open magnetic field lines, which is a key feature of a tokamak scrape-off layer. In contrast to prior attempts at this problem, we use an energy-conserving discontinuous Galerkin discretization in space. To model the interaction between the plasma and the wall, we design conducting-sheath boundary conditions that permit local currents into and out of the wall. We start by designing spatially one-dimensional kinetic models of parallel SOL dynamics and solve these systems using novel continuum algorithms. By generalizing these algorithms to higher dimensions and adding a model for collisions, we present results from the first gyrokinetic continuum simulations of turbulence on two types of open-field-line systems. The first simulation features uniform and straight field lines, such as found in some linear plasma devices. The second simulation is of a hypothetical model we developed of the NSTX scrape-off layer featuring helical field lines. These developments comprise a major step towards a gyrokinetic continuum code for quantitative predictions of turbulence and transport in the boundary plasma of magnetic fusion devices.
In this work, we compare gyrokinetic simulations in stellarators using different computational domains, namely, flux tube, full-flux-surface, and radially global domains. Two problems are studied: the linear relaxation of zonal flows and the linear s tability of ion temperature gradient (ITG) modes. Simulations are carried out with the codes EUTERPE, GENE, GENE-3D, and stella in magnetic configurations of LHD and W7-X using adiabatic electrons. The zonal flow relaxation properties obtained in different flux tubes are found to differ with each other and with the radially global result, except for sufficiently long flux tubes, in general. The flux tube length required for convergence is configuration-dependent. Similarly, for ITG instabilities, different flux tubes provide different results, but the discrepancy between them diminishes with increasing flux tube length. Full-flux-surface and flux tube simulations show good agreement in the calculation of the growth rate and frequency of the most unstable modes in LHD, while for W7-X differences in the growth rates are found between the flux tube and the full-flux-surface domains. Radially global simulations provide results close to the full-flux-surface ones. The radial scale of unstable ITG modes is studied in global and flux tube simulations finding that in W7-X, the radial scale of the most unstable modes depends on the binormal wavenumber, while in LHD no clear dependency is found.
We reanalyse an arbitrary-wavelength gyrokinetic formalism [A. M. Dimits, Phys. Plasmas $bf17$, 055901 (2010)], which orders only the vorticity to be small and allows strong, time-varying flows on medium and long wavelengths. We obtain a simpler gyro centre Lagrangian up to second order. In addition, the gyrokinetic Poisson equation, derived either via variation of the system Lagrangian or explicit density calculation, is consistent with that of the weak-flow gyrokinetic formalism [T. S. Hahm, Phys. Fluids $bf31$, 2670 (1988)] at all wavelengths in the weak flow limit. The reanalysed formalism has been numerically implemented as a particle-in-cell code. An iterative scheme is described which allows for numerical solution of this system of equations, given the implicit dependence of the Euler-Lagrange equations on the time derivative of the potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا