ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole production at lepton colliders

65   0   0.0 ( 0 )
 نشر من قبل Roberto Onofrio
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Production of black holes has been discussed in a variety of extensions of the Standard Model, and related bounds have been established from data taken at the Large Hadron Collider. We show that, if the Higgs particle has a fully gravitational content via the equivalence principle, enhanced cross-sections of black holes at colliders should be expected within the Standard Model itself. The case of black hole production by precision measurements at electron colliders is discussed. The Coulomb repulsion strongly suppresses the related cross-section with respect to the one based on the hoop conjecture, making the possible production of black holes still unfeasible with current beam technology. At the same time, this suggests the reanalysis of the bounds, based on the hoop conjecture, already determined in hadronic collisions for extra-dimensional models.



قيم البحث

اقرأ أيضاً

It has been conjectured that Micro Black Holes (MBH) may be formed in the presence of large extra dimensions. These MBHs have very small mass and they decay almost instantaneously. Taking into consideration quantum effects, they should Hawking radiat e mainly to Standard Model particles, this radiation then gets modified by the non trivial geometry around the MBHs; the so called greybody factors which filter the Hawking radiation. To test the validity of MBH models, one needs to investigate it experimentally. A primary tool in this investigation is simulation of the MBH formation and evaporation, including all theoretical work that has been performed up to now. BlackMax and CHARYBDIS2 are the most modern and realistic simulators currently available. However they still suffer from a lack of important parameters. In this article we will discuss the primary work that we have done to study the possible changes that can be implemented in the simulations.
We investigate possible signatures of black hole events at the LHC in the hypothesis that such objects will not evaporate completely, but leave a stable remnant. For the purpose of defining a reference scenario, we have employed the publicly availabl e Monte Carlo generator CHARYBDIS2, in which the remnants behavior is mostly determined by kinematic constraints and conservation of some quantum numbers, such as the baryon charge. Our findings show that electrically neutral remnants are highly favored and a significantly larger amount of missing transverse momentum is to be expected with respect to the case of complete decay.
We consider a scenario where light bino is the next-to-lightest supersymmetric particle (NLSP) and gravitino/axino is the lightest superysmmetric particle (LSP). For a bino mass less than or around hundred GeV, it can be pair produced at the future l epton colliders through $t-$channel slepton exchange, subsequently decaying into a gravitino/axino plus a photon. We study the prospects to look for such binos at the future colliders and find that a bino mass around 100 GeV can be probed at the $2sigma$ ($5sigma$) level for a slepton below 2 TeV (1.5 TeV) with a luminosity 3 $ab^{-1}$. For a bino mass around 10 GeV, a slepton mass less than 4 TeV (3 TeV) can be probed at the $2sigma$ ($5sigma$) level, which is much beyond the reach of the LHC for direct slepton searches.
We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vector-like quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as $gg to hh$ and $gammagammato hh$, where $h$ is the (lightest) Higgs boson and $g$ and $gamma$ respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of $e^+e^-to hhZ$ and $gammagammato hh$ can be enhanced due to the non-decoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for $ggto hh$ becomes very large because of the loop effect of the fermions. In the vector-like quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.
We present the first study of the production of a Standard Model Higgs boson at a lepton collider in association with a pair of W bosons, $e^+_{} e^-_{} to W^+_{} W^-_{} H$, in the inverse seesaw model. Taking into account all relevant experimental a nd theoretical constraints, we find sizable effects due to the additional heavy neutrinos up to -38% on the total cross-section at a center-of-mass energy of 3 TeV, and even up to -66% with suitable cuts. This motivates a detailed sensitivity analysis of the process $e^+_{} e^-_{} to W^+_{} W^-_{} H$ as it could provide a new, very competitive experimental probe of low-scale neutrino mass models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا