ﻻ يوجد ملخص باللغة العربية
We investigate possible signatures of black hole events at the LHC in the hypothesis that such objects will not evaporate completely, but leave a stable remnant. For the purpose of defining a reference scenario, we have employed the publicly available Monte Carlo generator CHARYBDIS2, in which the remnants behavior is mostly determined by kinematic constraints and conservation of some quantum numbers, such as the baryon charge. Our findings show that electrically neutral remnants are highly favored and a significantly larger amount of missing transverse momentum is to be expected with respect to the case of complete decay.
The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, suggests significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck s
We examine the LHC phenomenology of quantum black holes in models of TeV gravity. By quantum black holes we mean black holes of the smallest masses and entropies, far from the semiclassical regime. These black holes are formed and decay over short di
Production of black holes has been discussed in a variety of extensions of the Standard Model, and related bounds have been established from data taken at the Large Hadron Collider. We show that, if the Higgs particle has a fully gravitational conten
Black Hole measurements have grown significantly in the new age of gravitation wave astronomy from LIGO observations of binary black hole mergers. As yet unobserved massive ultralight bosonic fields represent one of the most exciting features of Stan
The eventual production of mini black holes by proton-proton collisions at the LHC is predicted by theories with large extra dimensions resolvable at the Tev scale of energies. It is expected that these black holes evaporate shortly after its product