ﻻ يوجد ملخص باللغة العربية
Searches for dark matter axion involve the use of microwave resonant cavities operating in a strong magnetic field. Detector sensitivity is directly related to the cavity quality factor, which is limited, however, by the presence of the external magnetic field. In this paper we present a cavity of novel design whose quality factor is not affected by a magnetic field. It is based on a photonic structure by the use of sapphire rods. The quality factor at cryogenic temperature is in excess of $5 times 10^5$ for a selected mode.
We demonstrate a superconducting (SC) microwave (mw) cavity that can accelerate the dark matter search by maintaining superconductivity in a high DC magnetic field. We used high-temperature superconductor (HTSC) yttrium barium copper oxide (YBCO) wit
The realization and characterization of a high quality factor resonator composed of two hollow-dielectric cylinders with its pseudo-TM$_{030}$ mode resonating at 10.9 GHz frequency is discussed. The quality factor was measured at the temperatures 300
In an effort to extend the usefulness of microwave cavity detectors to higher axion masses, above ~8 $mu$eV (~2 GHz), a numerical trade study of cavities was conducted to investigate the merit of using variable periodic post arrays and regulating van
The most compelling candidates for Dark Matter to day are WIMPs and axions. The applicability of gasesous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) to the search of these particles is explored within this work. Both p
The axion, a consequence of the PQ mechanism, has been considered as the most elegant solution to the strong-CP problem and a compelling candidate for cold dark matter. The Center for Axion and Precision Physics Research (CAPP) of the Institute for B