ﻻ يوجد ملخص باللغة العربية
Multi-channel deep clustering (MDC) has acquired a good performance for speech separation. However, MDC only applies the spatial features as the additional information. So it is difficult to learn mutual relationship between spatial and spectral features. Besides, the training objective of MDC is defined at embedding vectors, rather than real separated sources, which may damage the separation performance. In this work, we propose a deep attention fusion method to dynamically control the weights of the spectral and spatial features and combine them deeply. In addition, to solve the training objective problem of MDC, the real separated sources are used as the training objectives. Specifically, we apply the deep clustering network to extract deep embedding features. Instead of using the unsupervised K-means clustering to estimate binary masks, another supervised network is utilized to learn soft masks from these deep embedding features. Our experiments are conducted on a spatialized reverberant version of WSJ0-2mix dataset. Experimental results show that the proposed method outperforms MDC baseline and even better than the oracle ideal binary mask (IBM).
In this paper, we propose an end-to-end post-filter method with deep attention fusion features for monaural speaker-independent speech separation. At first, a time-frequency domain speech separation method is applied as the pre-separation stage. The
Deep clustering (DC) and utterance-level permutation invariant training (uPIT) have been demonstrated promising for speaker-independent speech separation. DC is usually formulated as two-step processes: embedding learning and embedding clustering, wh
Attention-based beamformers have recently been shown to be effective for multi-channel speech recognition. However, they are less capable at capturing local information. In this work, we propose a 2D Conv-Attention module which combines convolution n
Multi-speaker speech synthesis is a technique for modeling multiple speakers voices with a single model. Although many approaches using deep neural networks (DNNs) have been proposed, DNNs are prone to overfitting when the amount of training data is
Recurrent Neural Networks (RNNs) have long been the dominant architecture in sequence-to-sequence learning. RNNs, however, are inherently sequential models that do not allow parallelization of their computations. Transformers are emerging as a natura