ﻻ يوجد ملخص باللغة العربية
Phase transitions, compensation phenomenon and magnetization of a ferro-ferrimagnetic ternary alloy AB$_{rho}$C$_{1-rho}$ composed of three different kinds of magnetic ions A, B and C with the spin magnitude 1/2, 1 and 3/2 are examined within the framework of a mixed-spin Ising model on a honeycomb lattice with a selective annealed site disorder on one of its two sublattices. It is supposed that the first sublattice of a bipartite honeycomb lattice is formed by the spin-1/2 magnetic ions, while the sites of the second sublattice are randomly occupied either by the spin-1 magnetic ions with a probability $rho$ or the spin-3/2 magnetic ions with a probability $1-rho$, both being subject to a uniaxial single-ion anisotropy. The model under investigation can be exactly mapped into an effective spin-1/2 Ising model on a triangular lattice through the generalized star-triangle transformation. For a specific concentration of the spin-1 (spin-3/2) magnetic ions, it is shown that the ferro-ferrimagnetic version of the studied model may display a compensation temperature at which the total magnetization vanishes below a critical temperature. The critical temperature strikingly may also become independent of the concentration of the randomly mixed spin-1 and spin-3/2 magnetic ions for a specific value of a uniaxial single-ion anisotropy. The spontaneous magnetic order may be notably restored at finite temperatures through the order-by-disorder mechanism above a disordered ground state, which results in an anomalous temperature dependence of the total magnetization with double reentrant phase transitions.
A bipartite entanglement between two nearest-neighbor Heisenberg spins of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice is quantified using a concurrence. It is shown that the concurrence equals zero in a classical ferromagnetic
Ground states of the frustrated spin-1 Ising-Heisenberg two-leg ladder with Heisenberg intra-rung coupling and only Ising interaction along legs and diagonals are rigorously found by taking advantage of local conservation of the total spin on each ru
We introduce and analyze a quantum spin/Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit, b
We study the attractive fermionic Hubbard model on a honeycomb lattice using determinantal quantum Monte Carlo simulations. By increasing the interaction strength U (relative to the hopping parameter t) at half-filling and zero temperature, the syste
Motivated by the recent experimental realization of the Haldane model by ultracold fermions in an optical lattice, we investigate phase diagrams of the hard-core Bose-Hubbard model on a honeycomb lattice. This model is closely related with a spin-1/2