ﻻ يوجد ملخص باللغة العربية
We study the attractive fermionic Hubbard model on a honeycomb lattice using determinantal quantum Monte Carlo simulations. By increasing the interaction strength U (relative to the hopping parameter t) at half-filling and zero temperature, the system undergoes a quantum phase transition at 5.0 < U_c/t < 5.1 from a semi-metal to a phase displaying simultaneously superfluid behavior and density order. Doping away from half-filling, and increasing the interaction strength at finite but low temperature T, the system always appears to be a superfluid exhibiting a crossover between a BCS and a molecular regime. These different regimes are analyzed by studying the spectral function. The formation of pairs and the emergence of phase coherence throughout the sample are studied as U is increased and T is lowered.
Motivated by the recent experimental realization of the Haldane model by ultracold fermions in an optical lattice, we investigate phase diagrams of the hard-core Bose-Hubbard model on a honeycomb lattice. This model is closely related with a spin-1/2
We consider two-component one-dimensional quantum gases at special imbalanced commensurabilities which lead to the formation of multimer (multi-particle bound-states) as the dominant order parameter. Luttinger liquid theory supports a mode-locking me
The mechanism of fermionic pairing is the key to understanding various phenomena such as high-temperature superconductivity and the pseudogap phase in cuprate materials. We study the pair correlations in the attractive Hubbard model using ultracold f
We investigate the response to radio-frequency driving of an ultracold gas of attractively interacting fermions in a one-dimensional optical lattice. We study the system dynamics by monitoring the driving-induced population transfer to a third state,
Motivated by recent experiments on atomic Dirac fermions in a tunable honeycomb optical lattice, we study the attractive Hubbard model of superfluidity in the anisotropic honeycomb lattice. At weak-coupling, we find that the maximum mean field pairin