ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio & X-ray detections of GX 339--4 in quiescence using MeerKAT and Swift

110   0   0.0 ( 0 )
 نشر من قبل Evangelia Tremou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radio:X-ray correlation that characterises accreting black holes at all mass scales - from stellar mass black holes in binary systems to super-massive black holes powering Active Galactic Nuclei - is one of the most important pieces of observational evidence supporting the existence of a connection between the accretion process and the generation of collimated outflows - or jets - in accreting systems. Although recent studies suggest that the correlation extends down to low luminosities, only a handful of stellar mass black holes have been clearly detected, and in general only upper limits (especially at radio wavelengths) can be obtained during quiescence. We recently obtained detections of the black hole X-ray binary GX 339--4 in quiescence using the MeerKAT radio telescope and Swift X-ray Telescope instrument onboard the Neil Gehrels Swift Observatory, probing the lower end of the radio:X-ray correlation. We present the properties of accretion and of the connected generation of jets in the poorly studied low-accretion rate regime for this canonical black hole XRB system.

قيم البحث

اقرأ أيضاً

We fit spectra of galactic transient source GX~339-4 during its 2013 outburst using Two Component Advective Flow (TCAF) solution. For the first time, we are fitting combined NuSTAR and Swift observation with TCAF. We use TCAF to fit 0.8-9.0~keV Swift and 4-79 keV NuSTAR spectra along with the LAOR model. To fit the data we use disk accretion rate, halo accretion rate, size of the Compton cloud and the density jump of advective flows at this cloud boundary as model parameters. From TCAF fitted flow parameters, and energy spectral index we conclude that the source was in the hard state throughout this particular outburst. The present analysis also gives some idea about the broadening of Fe $K_{alpha}$ with the accretion rate. Since TCAF does not include Fe line yet, we make use of the `LAOR model as a phenomenological model and find an estimate of the Kerr parameter to be $sim 0.99$ for this candidate.
Black hole X-ray binaries show signs of non-thermal emission in the optical/near-infrared range. We analyze the optical/near-infrared SMARTS data on GX339$-$4 over the 2002--2011 period. Using the soft state data, we estimate the interstellar extinct ion towards the source and characteristic color temperatures of the accretion disk. We show that various spectral states of regular outbursts occupy similar regions on the color-magnitude diagrams, and that transitions between the states proceed along the same tracks despite substantial differences in the observed light curves morphology. We determine the typical duration of the hard-to-soft and soft-to-hard state transitions and the hard state at the decaying stage of the outburst to be one, two and four weeks, respectively. We find that the failed outbursts cannot be easily distinguished from the regular ones at their early stages, but if the source reaches 16 mag in $V$-band, it will transit to the soft state. By subtracting the contribution of the accretion disk, we obtain the spectra of the non-thermal component, which have constant, nearly flat shape during the transitions between the hard and soft states. In contrast to the slowly evolving non-thermal component seen at optical and near-infrared wavelengths, the mid-infrared spectrum is strongly variable on short timescales and sometimes shows a prominent excess with a cutoff below $10^{14}$ Hz. We show that the radio to optical spectrum can be modeled using three components corresponding to the jet, hot flow and irradiated accretion disk.
We investigate variability of optical and near-infrared light curves of the X-ray binary GX 339-4 on a timescale of days. We use the data in four filters from six intervals corresponding to the soft state and from four intervals corresponding to the quiescent state. In the soft state, we find prominent oscillations with the average period P = 1.772 $pm$ 0.003 d, which is offset from the measured orbital period of the system by 0.7 per cent. We suggest that the measured periodicity originates from the superhumps. In line with this interpretation we find no periodicity in the quiescent state. The obtained period excess $epsilon$ is below typical values found for cataclysmic variables for the same mass ratio of the binary. We discuss implications of this finding in the context of the superhump theory.
The existing radio and X-ray flux correlation for Galactic black holes in the hard and quiescent states relies on a sample which is mostly dominated by two sources (GX 339-4 and V404 Cyg) observed in a single outburst. In this paper, we report on a s eries of radio and X-ray observations of the recurrent black hole GX 339-4 with the Australia Telescope Compact Array, the Rossi X-ray Timing Explorer and the Swift satellites. With our new long term campaign, we now have a total of 88 quasi-simultaneous radio and X-ray observations of GX 339-4 during its hard state, covering a total of seven outbursts over a 15--year period. Our new measurements represent the largest sample for a stellar mass black hole, without any bias from distance uncertainties, over the largest flux variations and down to a level that could be close to quiescence, making GX 339-4 the reference source for comparison with other accreting sources (black holes, neutrons stars, white dwarfs and active galactic nuclei). Our results demonstrate a very strong and stable coupling between radio and X-ray emission, despite several outbursts of different nature and separated by a period of quiescence. The radio and X-ray luminosity correlation of the form L_X ~L_Rad^0.62 +/-0.01 confirms the non-linear coupling between the jet and the inner accretion flow powers and better defines the standard correlation track in the radio-X-ray diagram for stellar mass black holes. We further note epochs of deviations from the fit that significantly exceed the measurement uncertainties, especially during the formation and destruction of the compact jets ...[abridged]. We incorporated our new data in a more global study of black hole candidates strongly supporting a scale invariance in the jet-accretion coupling of accreting black holes, and confirms the existence of two populations of sources in the radio/X-ray diagram.
We report multiwavelength observations of the black hole transient GX 339-4 during its outburst decay in 2011 using the data from RXTE, Swift and SMARTS. Based on the X-ray spectral, temporal, and the optical/infrared (OIR) properties, the source evo lved from the soft-intermediate to the hard state. Twelve days after the start of the transition towards the hard state, a rebrightening was observed simultaneously in the optical and the infrared bands. Spectral energy distributions (SED) were created from observations at the start, and close to the peak of the rebrightening. The excess OIR emission above the smooth exponential decay yields flat spectral slopes for these SEDs. Assuming that the excess is from a compact jet, we discuss the possible locations of the spectral break that mark the transition from optically thick to optically thin synchrotron components. Only during the rising part of the rebrightening, we detected fluctuations with the binary period of the system. We discuss a scenario that includes irradiation of the disk in the intermediate state, irradiation of the secondary star during OIR rise and jet emission dominating during the peak to explain the entire evolution of the OIR light curve.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا