ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray, Optical and Infrared Observations of GX 339-4 During Its 2011 Decay

608   0   0.0 ( 0 )
 نشر من قبل Tolga Dincer
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report multiwavelength observations of the black hole transient GX 339-4 during its outburst decay in 2011 using the data from RXTE, Swift and SMARTS. Based on the X-ray spectral, temporal, and the optical/infrared (OIR) properties, the source evolved from the soft-intermediate to the hard state. Twelve days after the start of the transition towards the hard state, a rebrightening was observed simultaneously in the optical and the infrared bands. Spectral energy distributions (SED) were created from observations at the start, and close to the peak of the rebrightening. The excess OIR emission above the smooth exponential decay yields flat spectral slopes for these SEDs. Assuming that the excess is from a compact jet, we discuss the possible locations of the spectral break that mark the transition from optically thick to optically thin synchrotron components. Only during the rising part of the rebrightening, we detected fluctuations with the binary period of the system. We discuss a scenario that includes irradiation of the disk in the intermediate state, irradiation of the secondary star during OIR rise and jet emission dominating during the peak to explain the entire evolution of the OIR light curve.



قيم البحث

اقرأ أيضاً

146 - Q. C. Shui , H. X. Yin , S. Zhang 2021
We investigate systematically four outbursts of black hole system GX 339-4 observed by the Rossi X-ray Timing Explorer (RXTE) in both spectral and timing domains and find that these outbursts have some common properties although they experience diffe rent q tracks in the hardness-intensity diagram (HID). While the spectral indices are around 1.5 in low hard state (LHS), 2.4 in soft intermediate state (SIMS) and high soft state (HSS), the spectral parameters of thermal, non-thermal and reflection components vary significantly in transitions from LHS to HIMS. Also the quasi periodic oscillation (QPO) shows a peculiar behavior during the state transition between LHS and HIMS: the RMS drop of type C fundamental QPO is accompanied with showing-up of the second harmonic. Interestingly, the QPO RMS is found to have a similar linear relationship with the non-thermal fraction of emission in different outbursts. These findings provide more clues to our understanding the outburst of the black hole X-ray binary system.
X-ray and near-infrared ($J$-$H$-$K_{rm s}$) observations of the Galactic black hole binary GX 339--4 in the low/hard state were performed with Suzaku and IRSF in 2009 March. The spectrum in the 0.5--300 keV band is dominated by thermal Comptonizatio n of multicolor disk photons, with a small contribution from a direct disk component, indicating that the inner disk is almost fully covered by hot corona with an electron temperature of $approx$175 keV. The Comptonizing corona has at least two optical depths, $tau approx 1,0.4$. Analysis of the iron-K line profile yields an inner disk radius of $(13.3^{+6.4}_{-6.0}) R_{rm g}$ ($R_{rm g} $ represents the gravitational radius $GM/c^2$), with the best-fit inclination angle of $approx50^circ$. This radius is consistent with that estimated from the continuum fit by assuming the conservation of photon numbers in Comptonization. Our results suggest that the standard disk of GX 339--4 is likely truncated before reaching the innermost stable circular orbit (for a non rotating black hole) in the low/hard state at $sim$1% of the Eddington luminosity. The one-day averaged near-infrared light curves are found to be correlated with hard X-ray flux with $F_{rm Ks} propto F_{rm X}^{0.45}$. The flatter near infrared $ u F_{ u}$ spectrum than the radio one suggests that the optically thin synchrotron radiation from the compact jets dominates the near-infrared flux. Based on a simple analysis, we estimate the magnetic field and size of the jet base to be $5times10^4$ G and $6times 10^8$ cm, respectively. The synchrotron self Compton component is estimated to be approximately 0.4% of the total X-ray flux.
A rapid timing analysis of VLT/ULTRACAM and RXTE observations of the black hole binary GX 339-4 in its 2007 low/hard state is presented. The optical light curves in the r, g and u filters show slow (~20 s) quasi-periodic variability. Upon this is sup erposed fast flaring activity on times approaching the best time resolution probed (~50 ms) and with maximum strengths of more than twice the local mean. Power spectral analysis over ~0.004-10 Hz is presented, and shows that although the average optical variability amplitude is lower than that in X-rays, the peak variability power emerges at a higher Fourier frequency in the optical. Energetically, we measure a large optical vs. X-ray flux ratio, higher than that seen when the source was fully jet-dominated. Such a large ratio cannot be easily explained with a disc alone. The optical:X-ray cross-spectrum shows a markedly different behaviour above and below ~0.2 Hz. The peak of the coherence function above this threshold is associated with a short optical time lag, also seen as the dominant feature in the time-domain cross-correlation at ~150 ms. The rms energy spectrum of these fast variations is best described by distinct physical components over the optical and X-ray regimes, and also suggests a maximal disc fraction of 20% at ~5000 A. If the constant time delay is due to propagation of fluctuations to (or within) the jet, this is the clearest optical evidence to date of the location of this component. The low-frequency QPO is seen in the optical but not in X-rays. Evidence of reprocessing emerges at the lowest Fourier frequencies, with optical lags at ~10 s and strong coherence in the blue u filter. Simultaneous optical spectroscopy also shows the Bowen fluorescence blend, though its emission location is unclear. But canonical disc reprocessing cannot dominate the optical power easily, nor explain the fast variability. (abridged)
Black hole X-ray binaries show signs of non-thermal emission in the optical/near-infrared range. We analyze the optical/near-infrared SMARTS data on GX339$-$4 over the 2002--2011 period. Using the soft state data, we estimate the interstellar extinct ion towards the source and characteristic color temperatures of the accretion disk. We show that various spectral states of regular outbursts occupy similar regions on the color-magnitude diagrams, and that transitions between the states proceed along the same tracks despite substantial differences in the observed light curves morphology. We determine the typical duration of the hard-to-soft and soft-to-hard state transitions and the hard state at the decaying stage of the outburst to be one, two and four weeks, respectively. We find that the failed outbursts cannot be easily distinguished from the regular ones at their early stages, but if the source reaches 16 mag in $V$-band, it will transit to the soft state. By subtracting the contribution of the accretion disk, we obtain the spectra of the non-thermal component, which have constant, nearly flat shape during the transitions between the hard and soft states. In contrast to the slowly evolving non-thermal component seen at optical and near-infrared wavelengths, the mid-infrared spectrum is strongly variable on short timescales and sometimes shows a prominent excess with a cutoff below $10^{14}$ Hz. We show that the radio to optical spectrum can be modeled using three components corresponding to the jet, hot flow and irradiated accretion disk.
We investigate variability of optical and near-infrared light curves of the X-ray binary GX 339-4 on a timescale of days. We use the data in four filters from six intervals corresponding to the soft state and from four intervals corresponding to the quiescent state. In the soft state, we find prominent oscillations with the average period P = 1.772 $pm$ 0.003 d, which is offset from the measured orbital period of the system by 0.7 per cent. We suggest that the measured periodicity originates from the superhumps. In line with this interpretation we find no periodicity in the quiescent state. The obtained period excess $epsilon$ is below typical values found for cataclysmic variables for the same mass ratio of the binary. We discuss implications of this finding in the context of the superhump theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا