ﻻ يوجد ملخص باللغة العربية
Detecting the large-scale structure of the Universe based on the galaxy distribution and characterising its components is of fundamental importance in astrophysics but is also a difficult task to achieve. Wide-area spectroscopic redshift surveys are required to accurately measure galaxy positions in space that also need to cover large areas of the sky. It is also difficult to create algorithms that can extract cosmic web structures (e.g. filaments). Moreover, these detections will be affected by systematic uncertainties that stem from the characteristics of the survey used (e.g. its completeness and coverage) and from the unique properties of the specific method adopted to detect the cosmic web (i.e. the assumptions it relies on and the free parameters it may employ). For these reasons, the creation of new catalogues of cosmic web features on wide sky areas is important, as this allows users to have at their disposal a well-understood sample of structures whose systematic uncertainties have been thoroughly investigated. In this paper we present the filament catalogues created using the discrete persistent structure extractor (DisPerSE) tool in the Sloan Digital Sky Survey (SDSS), and we fully characterise them in terms of their dependence on the choice of parameters pertaining to the algorithm, and with respect to several systematic issues that may arise in the skeleton as a result of the properties of the galaxy distribution (such as Finger-of-God redshift distortions and defects of the density field that are due to the boundaries of the survey).
Context. Friends-of-friends algorithms are a common tool to detect galaxy groups and clusters in large survey data. In order to be as precise as possible, they have to be carefully calibrated using mock catalogues. Aims. We create an accurate and r
Superclusters are the largest, observed matter density structures in the Universe. Recently Chon et al.(2013) presented the first supercluster catalogue constructed with a well-defined selection function based on the X-ray flux-limited cluster survey
The classical cosmological V/Vm-test is introduced and elaborated. Use of the differential distribution p(V/Vm) of the V/Vm-variable rather than just the mean <V/Vm> leads directly to the cosmological number density without any need for assumptions a
Based on galaxies from the Sloan Digital Sky Survey (SDSS) and subhalos in the corresponding reconstructed region from the constrained simulation of ELUCID, we study the alignment of central galaxies relative to their host groups in the group catalog
We propose a new approach to the missing baryons problem. Building on the common assumption that the missing baryons are in the form of the Warm Hot Intergalactic Medium (WHIM), we further assumed here that the galaxy luminosity density can be used a