ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy-group (halo) alignments from SDSS DR7 and the ELUCID simulation

120   0   0.0 ( 0 )
 نشر من قبل Youcai Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on galaxies from the Sloan Digital Sky Survey (SDSS) and subhalos in the corresponding reconstructed region from the constrained simulation of ELUCID, we study the alignment of central galaxies relative to their host groups in the group catalog, as well as the alignment relative to the corresponding subhalos in the ELUCID simulation. Galaxies in observation are matched to dark matter subhalos in the ELUCID simulation using a novel neighborhood abundance matching method. In observation, the major axes of galaxies are found to be preferentially aligned to the major axes of their host groups. There is a color dependence of galaxy-group alignment that red centrals have a stronger alignment along the major axes of their host groups than blue centrals. Combining galaxies in observation and subhalos in the ELUCID simulation, we also find that central galaxies have their major axes to be aligned to the major axes of their corresponding subhalos in the ELUCID simulation. We find that the galaxy-group and galaxy-subhalo alignment signals are stronger for galaxies in more massive halos. We find that the alignments between main subhalos and the SDSS matched subhalo systems in simulation are slightly stronger than the galaxy-group alignments in observation.



قيم البحث

اقرأ أيضاً

Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Galaxy Zoo 2 (GZ2), we investigate the alignment of spin axes of spiral galaxies with their surrounding large scale structure, which is charact erized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes of only have weak tendency to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all the three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.
134 - P. Nurmi , P. Heinamaki , T. Sepp 2013
The Millennium N-body simulation and the Sloan Digital Sky Survey seventh data release (SDSS DR7) galaxy and galaxy group catalogues are compared to study the properties of galaxy groups and the distribution of galaxies in groups. We construct mock g alaxy group catalogues for a Millennium semi-analytical galaxy catalogue by using the same friends-of-friends method, which was used by Tago et al to analyse the SDSS data. We analyse in detail the group luminosities, group richnesses, virial radii, sizes of groups and their rms velocities for four volume-limited samples from observations and simulations. Our results show that the spatial densities of groups agree within one order of magnitude in all samples with a rather good agreement between the mock catalogues and observations. All group property distributions have similar shapes and amplitudes for richer groups. For galaxy pairs and small groups, the group properties for observations and simulations are clearly different. In addition, the spatial distribution of galaxies in small groups is different: at the outskirts of the groups the galaxy number distributions do not agree, although the agreement is relatively good in the inner regions. Differences in the distributions are mainly due to the observational limitations in the SDSS sample and to the problems in the semi-analytical methods that produce too compact and luminous groups.
Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), we examine the alignment between the orientation of galaxies and their surrounding large scale structure in the context of the cosmic web. The latte r is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments, and strongly suggests that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.
Using the k-means cluster analysis algorithm, we carry out an unsupervised classification of all galaxy spectra in the seventh and final Sloan Digital Sky Survey data release (SDSS/DR7). Except for the shift to restframe wavelengths, and the normaliz ation to the g-band flux, no manipulation is applied to the original spectra. The algorithm guarantees that galaxies with similar spectra belong to the same class. We find that 99 % of the galaxies can be assigned to only 17 major classes, with 11 additional minor classes including the remaining 1%. The classification is not unique since many galaxies appear in between classes, however, our rendering of the algorithm overcomes this weakness with a tool to identify borderline galaxies. Each class is characterized by a template spectrum, which is the average of all the spectra of the galaxies in the class. These low noise template spectra vary smoothly and continuously along a sequence labeled from 0 to 27, from the reddest class to the bluest class. Our Automatic Spectroscopic K-means-based (ASK) classification separates galaxies in colors, with classes characteristic of the red sequence, the blue cloud, as well as the green valley. When red sequence galaxies and green valley galaxies present emission lines, they are characteristic of AGN activity. Blue galaxy classes have emission lines corresponding to star formation regions. We find the expected correlation between spectroscopic class and Hubble type, but this relationship exhibits a high intrinsic scatter. Several potential uses of the ASK classification are identified and sketched, including fast determination of physical properties by interpolation, classes as templates in redshift determinations, and target selection in follow-up works (we find classes of Seyfert galaxies, green valley galaxies, as well as a significant number of outliers). The ASK classification is publicly accessible through various websites.
Recent studies have shown that the cross-correlation coefficient between galaxies and dark matter is very close to unity on scales outside a few virial radii of galaxy halos, independent of the details of how galaxies populate dark matter halos. This finding makes it possible to determine the dark matter clustering from measurements of galaxy-galaxy weak lensing and galaxy clustering. We present new cosmological parameter constraints based on large-scale measurements of spectroscopic galaxy samples from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We generalise the approach of Baldauf et al. (2010) to remove small scale information (below 2 and 4 Mpc/h for lensing and clustering measurements, respectively), where the cross-correlation coefficient differs from unity. We derive constraints for three galaxy samples covering 7131 sq. deg., containing 69150, 62150, and 35088 galaxies with mean redshifts of 0.11, 0.28, and 0.40. We clearly detect scale-dependent galaxy bias for the more luminous galaxy samples, at a level consistent with theoretical expectations. When we vary both sigma_8 and Omega_m (and marginalise over non-linear galaxy bias) in a flat LCDM model, the best-constrained quantity is sigma_8 (Omega_m/0.25)^{0.57}=0.80 +/- 0.05 (1-sigma, stat. + sys.), where statistical and systematic errors have comparable contributions, and we fixed n_s=0.96 and h=0.7. These strong constraints on the matter clustering suggest that this method is competitive with cosmic shear in current data, while having very complementary and in some ways less serious systematics. We therefore expect that this method will play a prominent role in future weak lensing surveys. When we combine these data with WMAP7 CMB data, constraints on sigma_8, Omega_m, H_0, w_{de} and sum m_{ u} become 30--80 per cent tighter than with CMB data alone, since our data break several parameter degeneracies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا