ترغب بنشر مسار تعليمي؟ اضغط هنا

Training Keyword Spotters with Limited and Synthesized Speech Data

122   0   0.0 ( 0 )
 نشر من قبل Kevin Kilgour
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

With the rise of low power speech-enabled devices, there is a growing demand to quickly produce models for recognizing arbitrary sets of keywords. As with many machine learning tasks, one of the most challenging parts in the model creation process is obtaining a sufficient amount of training data. In this paper, we explore the effectiveness of synthesized speech data in training small, spoken term detection models of around 400k parameters. Instead of training such models directly on the audio or low level features such as MFCCs, we use a pre-trained speech embedding model trained to extract useful features for keyword spotting models. Using this speech embedding, we show that a model which detects 10 keywords when trained on only synthetic speech is equivalent to a model trained on over 500 real examples. We also show that a model without our speech embeddings would need to be trained on over 4000 real examples to reach the same accuracy.

قيم البحث

اقرأ أيضاً

Learning to recognize new keywords with just a few examples is essential for personalizing keyword spotting (KWS) models to a users choice of keywords. However, modern KWS models are typically trained on large datasets and restricted to a small vocab ulary of keywords, limiting their transferability to a broad range of unseen keywords. Towards easily customizable KWS models, we present KeySEM (Keyword Speech EMbedding), a speech embedding model pre-trained on the task of recognizing a large number of keywords. Speech representations offered by KeySEM are highly effective for learning new keywords from a limited number of examples. Comparisons with a diverse range of related work across several datasets show that our method achieves consistently superior performance with fewer training examples. Although KeySEM was pre-trained only on English utterances, the performance gains also extend to datasets from four other languages indicating that KeySEM learns useful representations well aligned with the task of keyword spotting. Finally, we demonstrate KeySEMs ability to learn new keywords sequentially without requiring to re-train on previously learned keywords. Our experimental observations suggest that KeySEM is well suited to on-device environments where post-deployment learning and ease of customization are often desirable.
In recent years, Text-To-Speech (TTS) has been used as a data augmentation technique for speech recognition to help complement inadequacies in the training data. Correspondingly, we investigate the use of a multi-speaker TTS system to synthesize spee ch in support of speaker recognition. In this study we focus the analysis on tasks where a relatively small number of speakers is available for training. We observe on our datasets that TTS synthesized speech improves cross-domain speaker recognition performance and can be combined effectively with multi-style training. Additionally, we explore the effectiveness of different types of text transcripts used for TTS synthesis. Results suggest that matching the textual content of the target domain is a good practice, and if that is not feasible, a transcript with a sufficiently large vocabulary is recommended.
Deep neural networks provide effective solutions to small-footprint keyword spotting (KWS). However, if training data is limited, it remains challenging to achieve robust and highly accurate KWS in real-world scenarios where unseen sounds that are ou t of the training data are frequently encountered. Most conventional methods aim to maximize the classification accuracy on the training set, without taking the unseen sounds into account. To enhance the robustness of the deep neural networks based KWS, in this paper, we introduce a new loss function, named the maximization of the area under the receiver-operating-characteristic curve (AUC). The proposed method not only maximizes the classification accuracy of keywords on the closed training set, but also maximizes the AUC score for optimizing the performance of non-keyword segments detection. Experimental results on the Google Speech Commands dataset v1 and v2 show that our method achieves new state-of-the-art performance in terms of most evaluation metrics.
Keyword spotting (KWS) provides a critical user interface for many mobile and edge applications, including phones, wearables, and cars. As KWS systems are typically always on, maximizing both accuracy and power efficiency are central to their utility . In this work we use hardware aware training (HAT) to build new KWS neural networks based on the Legendre Memory Unit (LMU) that achieve state-of-the-art (SotA) accuracy and low parameter counts. This allows the neural network to run efficiently on standard hardware (212$mu$W). We also characterize the power requirements of custom designed accelerator hardware that achieves SotA power efficiency of 8.79$mu$W, beating general purpose low power hardware (a microcontroller) by 24x and special purpose ASICs by 16x.
Single-microphone, speaker-independent speech separation is normally performed through two steps: (i) separating the specific speech sources, and (ii) determining the best output-label assignment to find the separation error. The second step is the m ain obstacle in training neural networks for speech separation. Recently proposed Permutation Invariant Training (PIT) addresses this problem by determining the output-label assignment which minimizes the separation error. In this study, we show that a major drawback of this technique is the overconfident choice of the output-label assignment, especially in the initial steps of training when the network generates unreliable outputs. To solve this problem, we propose Probabilistic PIT (Prob-PIT) which considers the output-label permutation as a discrete latent random variable with a uniform prior distribution. Prob-PIT defines a log-likelihood function based on the prior distributions and the separation errors of all permutations; it trains the speech separation networks by maximizing the log-likelihood function. Prob-PIT can be easily implemented by replacing the minimum function of PIT with a soft-minimum function. We evaluate our approach for speech separation on both TIMIT and CHiME datasets. The results show that the proposed method significantly outperforms PIT in terms of Signal to Distortion Ratio and Signal to Interference Ratio.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا