ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of gravity waves on the middle atmosphere of Mars: a non-orographic gravity wave parameterization based on Global Climate modeling and MCS observations

113   0   0.0 ( 0 )
 نشر من قبل Gabriella Gilli Gg
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The impact of gravity waves (GW) on diurnal tides and the global circulation in the middle/upper atmosphere of Mars is investigated using a General Circulation Model (GCM). We have implemented a stochastic parameterization of non-orographic GW into the Laboratoire de Meteorologie Dynamique (LMD) Mars GCM (LMD-MGCM) following an innovative approach. The source is assumed to be located above typical convective cells ($sim$ 250 Pa) and the effect of GW on the circulation and predicted thermal structure above 1 Pa ($sim$ 50 km) is analyzed. We focus on the comparison between model simulations and observations by the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter during Martian Year 29. MCS data provide the only systematic measurements of the Martian mesosphere up to 80 km to date. The primary effect of GW is to damp the thermal tides by reducing the diurnal oscillation of the meridional and zonal winds. The GW drag reaches magnitudes of the order of 1 m/s/sol above 10$^{-2}$ Pa in the northern hemisphere winter solstice and produces major changes in the zonal wind field (from tens to hundreds of m/s), while the impact on the temperature field is relatively moderate (10-20K). It suggests that GW induced alteration of the meridional flow is the main responsible for the simulated temperature variation. The results also show that with the GW scheme included, the maximum day-night temperature difference due to the diurnal tide is around 10K, and the peak of the tide is shifted toward lower altitudes, in better agreement with MCS observations.



قيم البحث

اقرأ أيضاً

The climate and circulation of a terrestrial planet are governed by, among other things, the distance to its host star, its size, rotation rate, obliquity, atmospheric composition and gravity. Here we explore the effects of the last of these, the New tonian gravitational acceleration, on its atmosphere and climate. We first demonstrate that if the atmosphere obeys the hydrostatic primitive equations, which are a very good approximation for most terrestrial atmospheres, and if the radiative forcing is unaltered, changes in gravity have no effect at all on the circulation except for a vertical rescaling. That is to say, the effects of gravity may be completely scaled away and the circulation is unaltered. However, if the atmosphere contains a dilute condensible that is radiatively active, such as water or methane, then an increase in gravity will generally lead to a cooling of the planet because the total path length of the condensible will be reduced as gravity increases, leading to a reduction in the greenhouse effect. Furthermore, the specific humidity will decrease, leading to changes in the moist adiabatic lapse rate, in the equator-to-pole heat transport, and in the surface energy balance because of changes in the sensible and latent fluxes. These effects are all demonstrated both by theoretical arguments and by numerical simulations with moist and dry general circulation models.
Trapped atmosphere waves, such as IGW waveguide modes and Lamb modes, are described using dissipative solution above source (DSAS) (Dmitrienko and Rudenko, 2016). Accordingly this description, the modes are disturbances penetrating without limit in t he upper atmosphere and dissipating their energy throughout the atmosphere; leakage from a trapping region to the upper atmosphere is taken in consideration. The DSAS results are compared to those based on both accurate and WKB approximated dissipationless equations. It is shown that the spatial and frequency characteristics of modes in the upper atmosphere calculated by any of the methods are close to each other and are in good agreement with the observed characteristics of traveling ionospheric disturbances.
268 - M. Scherf , H. Lammer 2021
It is not yet entirely clear whether Mars began as a warm and wet planet that evolved towards the present-day cold and dry body or if it always was cold and dry with just some sporadic episodes of liquid water on its surface. An important clue into t his question can be gained by studying the earliest evolution of the Martian atmosphere and whether it was dense and stable to maintain a warm and wet climate or tenuous and susceptible to strong atmospheric escape. We discuss relevant aspects for the evolution and stability of a potential early Martian atmosphere. This contains the solar EUV flux evolution, the formation timescale and volatile inventory of the planet including volcanic degassing, impact delivery and removal, the loss of a catastrophically outgassed steam atmosphere, atmosphere-surface interactions, and thermal and non-thermal escape processes affecting any secondary atmosphere. While early non-thermal escape at Mars before 4 billion years ago (Ga) is poorly understood, particularly in view of its ancient intrinsic magnetic field, research on thermal escape processes indicate that volatile delivery and volcanic degassing cannot counterbalance the strong thermal escape. Therefore, a catastrophically outgassed steam atmosphere of several bars of CO2 and H2O, or CO and H2 for reduced conditions, could have been lost within just a few million years (Myr). Thereafter, Mars likely could not build up a dense secondary atmosphere during its first ~400 Myr but might only have possessed an atmosphere sporadically during events of strong volcanic degassing, potentially also including SO2. This indicates that before ~4.1 Ga Mars indeed might have been cold and dry. A denser CO2- or CO-dominated atmosphere, however, might have built up afterwards but must have been lost later-on due to non-thermal escape processes and sequestration into the ground.
The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earths atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earths climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earths atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modeled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities. Omissis. Finally, we discuss the reliability of the available data and we propose additional coordinated work, first to build composite SSI datasets out of scattered observations and to refine current SSI models, and second, to run coordinated CCM experiments.
In a recent paper (Straus et al. 2008) we determined the energy flux of internal gravity waves in the lower solar atmosphere using a combination of 3D numerical simulations and observations obtained with the IBIS instrument operated at the Dunn Solar Telescope and the Michelson Doppler Imager (MDI) on SOHO. In this paper we extend these studies using coordinated observations from SOT/NFI and SOT/SP on Hinode and MDI. The new measurements confirm that gravity waves are the dominant phenomenon in the quiet middle/upper photosphere and that they transport more mechanical energy than the high-frequency (> 5mHz) acoustic waves, even though we find an acoustic flux 3-5 times larger than the upper limit estimate of Fossum & Carlsson (2005). It therefore appears justified to reconsider the significance of (non-M)HD waves for the energy balance of the solar chromosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا