ترغب بنشر مسار تعليمي؟ اضغط هنا

Questioning the spatial origin of complex organic molecules in young protostars with the CALYPSO survey

59   0   0.0 ( 0 )
 نشر من قبل Arnaud Belloche
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Complex organic molecules (COMs) have been detected in a few Class 0 protostars but their origin is not well understood. Going beyond studies of individual objects, we want to investigate the origin of COMs in young protostars on a statistical basis. We use the CALYPSO survey performed with the IRAM PdBI to search for COMs at high angular resolution in a sample of 26 solar-type protostars, including 22 Class 0 and four Class I objects. Methanol is detected in 12 sources and tentatively in one source, which represents half of the sample. Eight sources (30%) have detections of at least three COMs. We find a strong chemical differentiation in multiple systems with five systems having one component with at least three COMs detected but the other component devoid of COM emission. The internal luminosity is found to be the source parameter impacting the most the COM chemical composition of the sources, while there is no obvious correlation between the detection of COM emission and that of a disk-like structure. A canonical hot-corino origin may explain the COM emission in four sources, an accretion-shock origin in two or possibly three sources, and an outflow origin in three sources. The CALYPSO sources with COM detections can be classified into three groups on the basis of the abundances of oxygen-bearing molecules, cyanides, and CHO-bearing molecules. These chemical groups correlate neither with the COM origin scenarii, nor with the evolutionary status of the sources if we take the ratio of envelope mass to internal luminosity as an evolutionary tracer. We find strong correlations between molecules that are a priori not related chemically (for instance methanol and methyl cyanide), implying that the existence of a correlation does not imply a chemical link. [abridged]

قيم البحث

اقرأ أيضاً

101 - Yao-Lun Yang 2021
To date, about two dozen low-mass embedded protostars exhibit rich spectra with lines of complex organic molecule (COM). These protostars seem to possess different enrichment in COMs. However, the statistics of COM abundance in low-mass protostars ar e limited by the scarcity of observations. This study introduces the Perseus ALMA Chemistry Survey (PEACHES), which aims at unbiasedly characterizing the chemistry of COMs toward the embedded (Class 0/I) protostars in the Perseus molecular cloud. Of 50 embedded protostars surveyed, 58% of them have emission from COMs. A 56%, 32%, and 40% of the protostars have CH$_3$OH, CH$_3$OCHO, and N-bearing COMs, respectively. The detectability of COMs depends neither on the averaged continuum brightness temperature, a proxy of the H$_2$ column density, nor on the bolometric luminosity and the bolometric temperature. For the protostars with detected COMs, CH$_3$OH has a tight correlation with CH$_3$CN, spanning more than two orders of magnitude in column densities normalized by the continuum brightness temperature, suggesting a chemical relation between CH$_3$OH and CH$_3$CN and a large chemical diversity in the PEACHES samples at the same time. A similar trend with more scatter is also found between all identified COMs, hinting at a common chemistry for the sources with COMs. The correlation between COMs is insensitive to the protostellar properties, such as the bolometric luminosity and the bolometric temperature. The abundance of larger COMs (CH$_3$OCHO and CH$_3$OCH$_3$) relative to that of smaller COMs (CH$_3$OH and CH$_3$CN) increases with the inferred gas column density, hinting at an efficient production of complex species in denser envelopes.
67 - S. Anderl , S. Maret , S. Cabrit 2016
Context. Snow lines, marking regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. They can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. Aims. We aim at using the information on the sublimation regions of different kinds of ices to understand the chemistry of the envelope, its temperature and density structure, and the history of the accretion process. Methods. As part of the CALYPSO IRAM Large Program, we have obtained observations of C$^{18}$O, N$_2$H$^+$ and CH$_3$OH towards nearby Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. For four of these sources we have modeled the emission using a chemical code coupled with a radiative transfer module. Results. We observe an anti-correlation of C$^{18}$O and N$_2$H$^+$ in NGC 1333-IRAS4A, NGC 1333-IRAS4B, L1157, and L1448C, with N$_2$H$^+$ forming a ring around the centrally peaked C$^{18}$O emission due to N$_2$H$^+$ being chemically destroyed by CO. The emission regions of models and observations match for a CO binding energy of 1200 K, which is higher than the binding energy of pure CO ices ($sim$855 K). Furthermore, we find very low CO abundances inside the snow lines in our sources, about an order of magnitude lower than the total CO abundance observed in the gas on large scales in molecular clouds before depletion sets in. Conclusions. The high CO binding energy may hint at CO being frozen out in a polar ice environment like amorphous water ice or in non-polar CO$_2$-rich ice. The low CO abundances are comparable to values found in protoplanetary disks, which may indicate an evolutionary scenario where these low values are already established in the protostellar phase. (Abbr. Version)
Complex organic molecules (COMs) have been observed towards several low-mass young stellar objects (LYSOs). Small and heterogeneous samples have so far precluded conclusions on typical COM abundances, as well as the origin(s) of abundance variations between sources. We present observations towards 16 deeply embedded (Class 0/I) low-mass protostars using the IRAM 30m telescope. We detect CH$_2$CO, CH$_3$CHO, CH$_3$OCH$_3$, CH$_3$OCHO, CH$_3$CN, HNCO, and HC$_3$N towards 67%, 37%, 13%, 13%, 44%, 81%, and 75% of sources respectively. Median column densities derived using survival analysis range between 6.0x10$^{10}$ cm$^{-2}$ (CH$_3$CN) and 2.4x10$^{12}$ cm$^{-2}$ (CH$_3$OCH$_3$) and median abundances range between 0.48% (CH$_3$CN) and 16% (HNCO) with respect to CH$_3$OH. Column densities for each molecule vary by about one order of magnitude across the sample. Abundances with respect to CH$_3$OH are more narrowly distributed, especially for oxygen-bearing species. We compare observed median abundances with a chemical model for low-mass protostars and find fair agreement, although some modeling work remains to bring abundances higher with respect to CH$_3$OH. Median abundances with respect to CH$_3$OH in LYSOs are also found to be generally comparable to observed abundances in hot cores, hot corinos, and massive young stellar objects. Compared with comets, our sample is comparable for all molecules except HC$_3$N and CH$_2$CO, which likely become depleted at later evolutionary stages.
77 - L. Podio , B. Tabone , C. Codella 2020
As a part of the CALYPSO large programme, we constrain the properties of protostellar jets and outflows in a sample of 21 Class 0 protostars with internal luminosities, Lint, from 0.035 to 47 Lsun. We analyse high angular resolution (~0.5-1) IRAM PdB I observations in CO (2-1), SO ($5_6-4_5$), and SiO (5-4). CO (2-1), which probes outflowing gas, is detected in all the sources (for the first time in SerpS-MM22 and SerpS-MM18b). Collimated high-velocity jets in SiO (5-4) are detected in 67% of the sources (for the first time in IRAS4B2, IRAS4B1, L1448-NB, SerpS-MM18a), and 77% of these also show jet/outflow emission in SO ($5_6-4_5$). In 5 sources (24% of the sample) SO ($5_6-4_5$) probes the inner envelope and/or the disk. The CALYPSO survey shows that the outflow phenomenon is ubiquitous and that the detection rate of high-velocity jets increases with protostellar accretion, with at least 80% of the sources with Lint>1 Lsun driving a jet. The protostellar flows exhibit an onion-like structure, where the SiO jet (opening angle ~10$^o$) is nested into a wider angle SO (~15$^o$) and CO (~25$^o$) outflow. On scales >300 au the SiO jets are less collimated than atomic jets from Class II sources (~3$^o$). Velocity asymmetry between the two jet lobes are detected in one third of the sources, similarly to Class II atomic jets, suggesting that the same launching mechanism is at work. Most of the jets are SiO rich (SiO/H2 from >2.4e-7 to >5e-6), which indicates efficient release of >1%-10% of silicon in gas phase likely in dust-free winds, launched from inside the dust sublimation radius. The mass-loss rates (from ~7e-8 to ~3e-6 Msun/yr) are larger than what was measured for Class II jets. Similarly to Class II sources, the mass-loss rates are ~1%-50% of the mass accretion rates suggesting that the correlation between ejection and accretion in young stars holds from 1e4 yr up to a few Myr.
The detection of complex organic molecules (COMs) toward cold sources such as pre-stellar cores (with T<10 K), has challenged our understanding of the formation processes of COMs in the interstellar medium. Recent modelling on COM chemistry at low te mperatures has provided new insight into these processes predicting that COM formation depends strongly on parameters such as visual extinction and the level of CO freeze out. We report deep observations of COMs toward two positions in the L1544 pre-stellar core: the dense, highly-extinguished continuum peak with Av>=30 mag within the inner 2700 au; and a low-density shell with average Av~7.5-8 mag located at 4000 au from the cores center and bright in CH3OH. Our observations show that CH3O, CH3OCH3 and CH3CHO are more abundant (by factors ~2-10) toward the low-density shell than toward the continuum peak. Other COMs such as CH3OCHO, c-C3H2O, HCCCHO, CH2CHCN and HCCNC show slight enhancements (by factors <=3) but the associated uncertainties are large. This suggests that COMs are actively formed and already present in the low-density shells of pre-stellar cores. The modelling of the chemistry of O-bearing COMs in L1544 indicates that these species are enhanced in this shell because i) CO starts freezing out onto dust grains driving an active surface chemistry; ii) the visual extinction is sufficiently high to prevent the UV photo-dissociation of COMs by the external interstellar radiation field; and iii) the density is still moderate to prevent severe depletion of COMs onto grains.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا