ﻻ يوجد ملخص باللغة العربية
We present a formulation to give renormalon-free predictions consistently with fixed order perturbative results. The formulation has a similarity to Lees method in that the renormalon-free part consists of two parts: one is given by a series expansion which does not contain renormalons and the other is the real part of the Borel integral of a singular Borel transform. The main novel aspect is to evaluate the latter object using a dispersion relation technique, which was possible only in the large-$beta_0$ approximation. Here, we introduce an ambiguity function, which is defined by inverse Mellin transform of the singular Borel transform. With the ambiguity function, we can rewrite the Borel integral in an alternative formula, which allows us to obtain the real part using analytic techniques similarly to the case of the large-$beta_0$ approximation. We also present detailed studies of renormalization group properties of the formulation. As an example, we apply our formulation to the fixed-order result of the static QCD potential, whose closest renormalon is already visible.
We propose a clear definition of the gluon condensate within the large-$beta_0$ approximation as an attempt toward a systematic argument on the gluon condensate. We define the gluon condensate such that it is free from a renormalon uncertainty, consi
The investigation of the scalar gluonium correlator is interesting because it carries the quantum numbers of the vacuum and the relevant hadronic current is related to the anomalous trace of the QCD energy-momentum tensor in the chiral limit. After r
We point out that the location of renormalon singularities in theory on a circle-compactified spacetime $mathbb{R}^{d-1} times S^1$ (with a small radius $R Lambda ll 1$) can differ from that on the non-compactified spacetime $mathbb{R}^d$. We argue t
We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are ne
We determine the strong coupling constant $alpha_s(M_Z)$ from the static QCD potential by matching a lattice result and a theoretical calculation. We use a new theoretical framework based on operator product expansion (OPE), where renormalons are sub