ﻻ يوجد ملخص باللغة العربية
We propose a clear definition of the gluon condensate within the large-$beta_0$ approximation as an attempt toward a systematic argument on the gluon condensate. We define the gluon condensate such that it is free from a renormalon uncertainty, consistent with the renormalization scale independence of each term of the operator product expansion (OPE), and an identical object irrespective of observables. The renormalon uncertainty of $mathcal{O}(Lambda^4)$, which renders the gluon condensate ambiguous, is separated from a perturbative calculation by using a recently suggested analytic formulation. The renormalon uncertainty is absorbed into the gluon condensate in the OPE, which makes the gluon condensate free from the renormalon uncertainty. As a result, we can define the OPE in a renormalon-free way. Based on this renormalon-free OPE formula, we discuss numerical extraction of the gluon condensate using the lattice data of the energy density operator defined by the Yang--Mills gradient flow.
We present a formulation to give renormalon-free predictions consistently with fixed order perturbative results. The formulation has a similarity to Lees method in that the renormalon-free part consists of two parts: one is given by a series expansio
The investigation of the scalar gluonium correlator is interesting because it carries the quantum numbers of the vacuum and the relevant hadronic current is related to the anomalous trace of the QCD energy-momentum tensor in the chiral limit. After r
We determine the non-perturbative gluon condensate of four-dimensional SU(3) gauge theory in a model independent way. This is achieved by carefully subtracting high order perturbation theory results from non-perturbative lattice QCD determinations of
This letter reports on how the Wilson flow technique can efficaciously kill the short-distance quantum fluctuations of 2- and 3-gluon Green functions, removes the $Lambda_{rm QCD}$ scale and destroys the transition from the confining non-perturbative
The gluon condensate, $langle frac{alpha_s}{pi} G^2 rangle$, i.e. the leading order power correction in the operator product expansion of current correlators in QCD at short distances, is determined from $e^+ e^-$ annihilation data in the charm-quark