ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting the Gravitational Recoil from Black Hole Merger Signals

232   0   0.0 ( 0 )
 نشر من قبل Vijay Varma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational waves carry energy, angular momentum, and linear momentum. In generic binary black hole mergers, the loss of linear momentum imparts a recoil velocity, or a kick, to the remnant black hole. We exploit recent advances in gravitational waveform and remnant black hole modeling to extract information about the kick from the gravitational wave signal. Kick measurements such as these are astrophysically valuable, enabling independent constraints on the rate of second-generation mergers. Further, we show that kicks must be factored into future ringdown tests of general relativity with third-generation gravitational wave detectors to avoid systematic biases. We find that, although little information can be gained about the kick for existing gravitational wave events, interesting measurements will soon become possible as detectors improve. We show that, once LIGO and Virgo reach their design sensitivities, we will reliably extract the kick velocity for generically precessing binaries--including the so-called superkicks, reaching up to 5000 km/s.



قيم البحث

اقرأ أيضاً

We present accurate fits for the remnant properties of generically precessing binary black holes, trained on large banks of numerical-relativity simulations. We use Gaussian process regression to interpolate the remnant mass, spin, and recoil velocit y in the 7-dimensional parameter space of precessing black-hole binaries with mass ratios $qleq2$, and spin magnitudes $chi_1,chi_2leq0.8$. For precessing systems, our errors in estimating the remnant mass, spin magnitude, and kick magnitude are lower than those of existing fitting formulae by at least an order of magnitude (improvement is also reported in the extrapolated region at high mass ratios and spins). In addition, we also model the remnant spin and kick directions. Being trained directly on precessing simulations, our fits are free from ambiguities regarding the initial frequency at which precessing quantities are defined. We also construct a model for remnant properties of aligned-spin systems with mass ratios $qleq8$, and spin magnitudes $chi_1,chi_2leq0.8$. As a byproduct, we also provide error estimates for all fitted quantities, which can be consistently incorporated into current and future gravitational-wave parameter-estimation analyses. Our model(s) are made publicly available through a fast and easy-to-use Python module called surfinBH.
The radiation of linear momentum imparts a recoil (or kick) to the center of mass of a merging black hole binary system. Recent numerical relativity calculations have shown that eccentricity can lead to an approximate 25% increase in recoil velocitie s for equal-mass, spinning binaries with spins lying in the orbital plane (superkick configurations) [U Sperhake et al. Phys. Rev. D 101 (2020) 024044 (arXiv:1910.01598)]. Here we investigate the impact of nonzero eccentricity on the kick magnitude and gravitational-wave emission of nonspinning, unequal-mass black hole binaries. We confirm that nonzero eccentricities at merger can lead to kicks which are larger by up to ~25% relative to the quasicircular case. We also find that the kick velocity $v$ has an oscillatory dependence on eccentricity, that we interpret as a consequence of changes in the angle between the infall direction at merger and the apoapsis (or periapsis) direction.
We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, combining for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel L ISA response. We consider an ensemble of systems near the peak of LISAs sensitivity band, with total rest mass of 2times10^6 Modot, a redshift of z = 1, and randomly chosen orientations and sky positions. We find median sky localization errors of approximately sim3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging massive black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well- determined parameters. Although we have employed the baseline LISA design for this study, many of our conclusions regarding the information provided by mergers will be applicable to alternative mission designs as well.
Gravitational wave signals from compact astrophysical sources such as those observed by LIGO and Virgo require a high-accuracy, theory-based waveform model for the analysis of the recorded signal. Current inspiral-merger-ringdown models are calibrate d only up to moderate mass ratios, thereby limiting their applicability to signals from high-mass ratio binary systems. We present EMRISur1dq1e4, a reduced-order surrogate model for gravitational waveforms of 13,500M in duration and including several harmonic modes for non-spinning black hole binary systems with mass-ratios varying from 3 to 10,000 thus vastly expanding the parameter range beyond the current models. This surrogate model is trained on waveform data generated by point-particle black hole perturbation theory (ppBHPT) both for large mass-ratio and comparable mass-ratio binaries. We observe that the gravitational waveforms generated through a simple application of ppBHPT to the comparable mass-ratio cases agree remarkably (and surprisingly) well with those from full numerical relativity after a rescaling of the ppBHPTs total mass parameter. This observation and the EMRISur1dq1e4 surrogate model will enable data analysis studies in the high-mass ratio regime, including potential intermediate mass-ratio signals from LIGO/Virgo and extreme-mass ratio events of interest to the future space-based observatory LISA.
On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were anal yzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_odot$ and $29^{+4}_{-4} M_odot$; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be $<0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $610$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا