ترغب بنشر مسار تعليمي؟ اضغط هنا

Sky localization of complete inspiral-merger-ringdown signals for nonspinning massive black hole binaries

110   0   0.0 ( 0 )
 نشر من قبل Sean McWilliams
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the capability of LISA to measure the sky position of equal-mass, nonspinning black hole binaries, combining for the first time the entire inspiral-merger-ringdown signal, the effect of the LISA orbits, and the complete three-channel LISA response. We consider an ensemble of systems near the peak of LISAs sensitivity band, with total rest mass of 2times10^6 Modot, a redshift of z = 1, and randomly chosen orientations and sky positions. We find median sky localization errors of approximately sim3 arcminutes. This is comparable to the field of view of powerful electromagnetic telescopes, such as the James Webb Space Telescope, that could be used to search for electromagnetic signals associated with merging massive black holes. We investigate the way in which parameter errors decrease with measurement time, focusing specifically on the additional information provided during the merger-ringdown segment of the signal. We find that this information improves all parameter estimates directly, rather than through diminishing correlations with any subset of well- determined parameters. Although we have employed the baseline LISA design for this study, many of our conclusions regarding the information provided by mergers will be applicable to alternative mission designs as well.

قيم البحث

اقرأ أيضاً

201 - P. Ajith , M. Hannam , S. Husa 2009
We present the first analytical inspiral-merger-ringdown gravitational waveforms from binary black holes (BBHs) with non-precessing spins, that is based on a description of the late-inspiral, merger and ringdown in full general relativity. By matchin g a post-Newtonian description of the inspiral to a set of numerical-relativity simulations, we obtain a waveform family with a conveniently small number of physical parameters. These waveforms will allow us to detect a larger parameter space of BBH coalescence, including a considerable fraction of precessing binaries in the comparable-mass regime, thus significantly improving the expected detection rates.
We present the first modeled search for gravitational waves using the complete binary black hole gravitational waveform from inspiral through the merger and ringdown for binaries with negligible component spin. We searched approximately 2 years of LI GO data taken between November 2005 and September 2007 for systems with component masses of 1-99 solar masses and total masses of 25-100 solar masses. We did not detect any plausible gravitational-wave signals but we do place upper limits on the merger rate of binary black holes as a function of the component masses in this range. We constrain the rate of mergers for binary black hole systems with component masses between 19 and 28 solar masses and negligible spin to be no more than 2.0 per Mpc^3 per Myr at 90% confidence.
We investigate the precision with which the parameters describing the characteristics and location of nonspinning black hole binaries can be measured with the Laser Interferometer Space Antenna (LISA). By using complete waveforms including the inspir al, merger and ringdown portions of the signals, we find that LISA will have far greater precision than previous estimates for nonspinning mergers that ignored the merger and ringdown. Our analysis covers nonspinning waveforms with moderate mass ratios, q >= 1/10, and total masses 10^5 < M/M_{Sun} < 10^7. We compare the parameter uncertainties using the Fisher matrix formalism, and establish the significance of mass asymmetry and higher-order content to the predicted parameter uncertainties resulting from inclusion of the merger. In real-time observations, the later parts of the signal lead to significant improvements in sky-position precision in the last hours and even the final minutes of observation. For comparable mass systems with total mass M/M_{Sun} = ~10^6, we find that the increased precision resulting from including the merger is comparable to the increase in signal-to-noise ratio. For the most precise systems under investigation, half can be localized to within O(10 arcmin), and 10% can be localized to within O(1 arcmin).
We present $texttt{ENIGMA}$, a time domain, inspiral-merger-ringdown waveform model that describes non-spinning binary black holes systems that evolve on moderately eccentric orbits. The inspiral evolution is described using a consistent combination of post-Newtonian theory, self-force and black hole perturbation theory. Assuming eccentric binaries that circularize prior to coalescence, we smoothly match the eccentric inspiral with a stand-alone, quasi-circular merger, which is constructed using machine learning algorithms that are trained with quasi-circular numerical relativity waveforms. We show that $texttt{ENIGMA}$ reproduces with excellent accuracy the dynamics of quasi-circular compact binaries. We validate $texttt{ENIGMA}$ using a set of $texttt{Einstein Toolkit}$ eccentric numerical relativity waveforms, which describe eccentric binary black hole mergers with mass-ratios between $1 leq q leq 5.5$, and eccentricities $e_0 lesssim 0.2$ ten orbits before merger. We use this model to explore in detail the physics that can be extracted with moderately eccentric, non-spinning binary black hole mergers. We use $texttt{ENIGMA}$ to show that GW150914, GW151226, GW170104, GW170814 and GW170608 can be effectively recovered with spinning, quasi-circular templates if the eccentricity of these events at a gravitational wave frequency of 10Hz satisfies $e_0leq {0.175,, 0.125,,0.175,,0.175,, 0.125}$, respectively. We show that if these systems have eccentricities $e_0sim 0.1$ at a gravitational wave frequency of 10Hz, they can be misclassified as quasi-circular binaries due to parameter space degeneracies between eccentricity and spin corrections. Using our catalog of eccentric numerical relativity simulations, we discuss the importance of including higher-order waveform multipoles in gravitational wave searches of eccentric binary black hole mergers.
We present the results of 14 simulations of nonspinning black hole binaries with mass ratios $q=m_1/m_2$ in the range $1/100leq qleq1$. For each of these simulations we perform three runs at increasing resolution to assess the finite difference error s and to extrapolate the results to infinite resolution. For $qgeq 1/6$, we follow the evolution of the binary typically for the last ten orbits prior to merger. By fitting the results of these simulations, we accurately model the peak luminosity, peak waveform frequency and amplitude, and the recoil of the remnant hole for unequal mass nonspinning binaries. We verify the accuracy of these new models and compare them to previously existing empirical formulas. These new fits provide a basis for a hierarchical approach to produce more accurate remnant formulas in the generic precessing case. They also provide input to gravitational waveform modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا