ﻻ يوجد ملخص باللغة العربية
We revisit Weyls unified field theory, which arose in 1918, shortly after general relativity was discovered. As is well known, in order to extend the program of geometrization of physics started by Einstein to include the electromagnetic field, H. Weyl developed a new geometry which constitutes a kind of generalization of Riemannian geometry. However, despite its mathematical elegance and beauty, a serious objection was made by Einstein, who considered Weyls theory not suitable as a physical theory since it seemed to lead to the prediction of a not yet observed effect, the so-called second clock effect . In this paper, our aim is to discuss Weyls proposal anew and examine its consistency and completeness as a physical theory. Finally, we propose new directions and possible conceptual changes in the original work. As an application, we solve the field equations assuming a Friedmann-Robertson-Walker universe and a perfect fluid as its source. Although we have entirely abandoned Weyls atempt to identify the vector field with the 4-dimensional electromagnetic potentials, which here must be simply viewed as part of the space-time geometry, we believe that in this way we could perhaps be led to a rich and interesting new modified gravity theory.
We develop a description of tidal effects in astrophysical systems using effective field theory techniques. While our approach is equally capable of describing objects in the Newtonian regime (e.g. moons, rocky planets, main sequence stars, etc.) as
Spin-relaxation is conventionally discussed using two different approaches for materials with and without inversion symmetry. The former is known as the Elliott-Yafet (EY) theory and for the latter the Dyakonov-Perel (DP) theory applies, respectively
In this work we investigate the interaction between spin-zero and spin-one monopoles by making use of an effective field theory based on two-body and four-body interaction parts. In particular, we analyze the formation of bound state of monopole-anti
Usually, interpretation of redshift in static spacetimes (for example, near black holes) is opposed to that in cosmology. In this methodological note we show that both explanations are unified in a natural picture. This is achieved if considering the
An unified cosmological model for an Universe filled with a mass dimension one (MDO) fermionic field plus the standard matter fields is considered. After a primordial quantum fluctuation the field slowly rolls down to the bottom of a symmetry breakin