ﻻ يوجد ملخص باللغة العربية
The exploration of complex physical or technological processes usually requires exploiting available information from different sources: (i) physical laws often represented as a family of parameter dependent partial differential equations and (ii) data provided by measurement devices or sensors. The amount of sensors is typically limited and data acquisition may be expensive and in some cases even harmful. This article reviews some recent developments for this small-data scenario where inversion is strongly aggravated by the typically large parametric dimensionality. The proposed concepts may be viewed as exploring alternatives to Bayesian inversion in favor of more deterministic accuracy quantification related to the required computational complexity. We discuss optimality criteria which delineate intrinsic information limits, and highlight the role of reduced models for developing efficient computational strategies. In particular, the need to adapt the reduced models -- not to a specific (possibly noisy) data set but rather to the sensor system -- is a central theme. This, in turn, is facilitated by exploiting geometric perspectives based on proper stable variational formulations of the continuous model.
State estimation aims at approximately reconstructing the solution $u$ to a parametrized partial differential equation from $m$ linear measurements, when the parameter vector $y$ is unknown. Fast numerical recovery methods have been proposed based on
Reduced model spaces, such as reduced basis and polynomial chaos, are linear spaces $V_n$ of finite dimension $n$ which are designed for the efficient approximation of families parametrized PDEs in a Hilbert space $V$. The manifold $mathcal{M}$ that
This work presents a nonintrusive physics-preserving method to learn reduced-order models (ROMs) of Hamiltonian systems. Traditional intrusive projection-based model reduction approaches utilize symplectic Galerkin projection to construct Hamiltonian
The need for multiple interactive, real-time simulations using different parameter values has driven the design of fast numerical algorithms with certifiable accuracies. The reduced basis method (RBM) presents itself as such an option. RBM features a
The task of repeatedly solving parametrized partial differential equations (pPDEs) in, e.g. optimization or interactive applications, makes it imperative to design highly efficient and equally accurate surrogate models. The reduced basis method (RBM)