ترغب بنشر مسار تعليمي؟ اضغط هنا

Stacking enabled strong coupling of atomic motion to interlayer excitons in van der Waals heterojunction photodiodes

205   0   0.0 ( 0 )
 نشر من قبل Trevor Arp
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We reveal stacking-induced strong coupling between atomic motion and interlayer excitons through photocurrent measurements of WSe$_2$/MoSe$_2$ heterojunction photodiodes. Strong coupling manifests as pronounced periodic sidebands in the photocurrent spectrum in frequency windows close to the interlayer exciton resonances. The sidebands, which repeat over large swathes of the interlayer exciton photocurrent spectrum, occur in energy increments corresponding directly to a prominent vibrational mode of the heterojunction. Such periodic patterns, together with interlayer photoconductance oscillations, vividly demonstrate the emergence of extraordinarily strong exciton-phonon coupling - and its impact on interlayer excitations - in stack-engineered van der Waals heterostructure devices. Our results establish photocurrent spectroscopy as a powerful tool for interrogating vibrational coupling to interlayer excitons and suggest an emerging strategy to control vibronic physics in the solid-state.

قيم البحث

اقرأ أيضاً

Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transitio n metal dichalcogenide (TMDC) heterostructures can be designed and built by assembling individual single-layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single layer WSe2 and MoS2 building blocks. We observe a large Stokes-like shift of ~100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment with spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN (h-BN) dielectric layers into the vdW gap. The generic nature of this interlayer coupling consequently provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.
Vertically stacked van der Waals heterostructures constitute a promising platform for providing tailored band alignment with enhanced excitonic systems. Here we report observations of neutral and charged interlayer excitons in trilayer WSe2-MoSe2-WSe 2 van der Waals heterostructures and their dynamics. The addition of a WSe2 layer in the trilayer leads to significantly higher photoluminescence quantum yields and tunable spectral resonance compared to its bilayer heterostructures at cryogenic temperatures. The observed enhancement in the photoluminescence quantum yield is due to significantly larger electron-hole overlap and higher light absorbance in the trilayer heterostructure, supported via first-principle pseudopotential calculations based on spin-polarized density functional theory. We further uncover the temperature- and power-dependence, as well as time-resolved photoluminescence of the trilayer heterostructure interlayer neutral excitons and trions. Our study elucidates the prospects of manipulating light emission from interlayer excitons and designing atomic heterostructures from first-principles for optoelectronics.
541 - Hongyi Yu , Gui-Bin Liu , Wang Yao 2018
We investigate the optical properties of spin-triplet interlayer excitons in heterobilayer transition metal dichalcogenides in comparison with the spin-singlet ones. Surprisingly, the optical transition dipole of the spin-triplet exciton is found to be in the same order of magnitude to that of the spin-singlet exciton, in sharp contrast to the monolayer excitons where the spin triplet species is considered as dark compared to the singlet. Unlike the monolayer excitons whose spin-conserved (spin-flip) transition dipole can only couple to light of in-plane (out-of-plane) polarization, such restriction is removed for the interlayer excitons due to the breaking of the out-of-plane mirror symmetry. We find that as the interlayer atomic registry changes, the optical transition dipole of interlayer exciton crosses between in-plane ones of opposite circular polarization and the out-of-plane one for both the spin-triplet and spin-singlet species. As a result, excitons of both species have non-negligible coupling into photon modes of both in-plane and out-of-plane propagations, another sharp difference from the monolayers where the exciton couples predominantly into the out-of-plane propagation channel. At given atomic registry, the spin-triplet and spin-singlet excitons have distinct valley polarization selection rules, allowing the selective optical addressing of both the valley configuration and the spin singlet/triplet configuration of interlayer excitons.
Throughout the years, strongly correlated coherent states of excitons have been the subject of intense theoretical and experimental studies. This topic has recently boomed due to new emerging quantum materials such as van der Waals (vdW) bound atomic ally thin layers of transition metal dichalcogenides (TMDs). We analyze the collective properties of charged interlayer excitons observed recently in bilayer TMD heterostructures. We predict new strongly correlated phases - crystal and Wigner crystal - that can be selectively realized with TMD bilayers of properly chosen electron-hole effective masses by just varying their interlayer separation distance. Our results open up new avenues for nonlinear coherent control, charge transport and spinoptronics applications with quantum vdW heterostuctures.
Atomistic van der Waals heterostacks are ideal systems for high-temperature exciton condensation because of large exciton binding energies and long lifetimes. Charge transport and electron energy-loss spectroscopy showed first evidence of excitonic m any-body states in such two-dimensional materials. Pure optical studies, the most obvious way to access the phase diagram of photogenerated excitons have been elusive. We observe several criticalities in photogenerated exciton ensembles hosted in MoSe2-WSe2 heterostacks with respect to photoluminescence intensity, linewidth, and temporal coherence pointing towards the transition to a coherent quantum state. For this state, the occupation is 100 percent and the exciton diffusion length is increased. The phenomena survive above 10 kelvin, consistent with the predicted critical condensation temperature. Our study provides a first phase-diagram of many-body interlayer exciton states including Bose Einstein condensation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا