ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of spin-polarized superconductors -- an analogue of superfluid $^3$He A-phase

84   0   0.0 ( 0 )
 نشر من قبل Kazushige Machida
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kazushige Machida




اسأل ChatGPT حول البحث

It is shown theoretically that ferromagnetic superconductors, UGe$_2$, URhGe, and UCoGe can be described in terms of the A-phase like triplet pairing similar to superfluid $^3$He in a unified way, including peculiar reentrant, S-shape, or L-shape $H_{rm c2}$ curves. The associated double transition inevitable between the A$_1$ and A$_2$-phases in the $H$-$T$ plane is predicted, both of which are characterized by non-unitary state with broken time reversal symmetry and the half-gap. UTe$_2$, which has been discovered quite recently to be a spin-polarized superconductor, is analyzed successively in the same view point, pointing out that the expected A$_1$-A$_2$ transition is indeed emerging experimentally. Thus the four heavy Fermion compounds all together are entitled to be topologically rich solid state materials worth further investigating together with superfluid $^3$He A-phase.

قيم البحث

اقرأ أيضاً

95 - H. Choi , K. Yawata , T.M. Haard 2004
The specific heat of superfluid $^{3}$He, disordered by a silica aerogel, is found to have a sharp discontinuity marking the thermodynamic transition to superfluidity at a temperature reduced from that of bulk $^{3}$He. The magnitude of the discontin uity is also suppressed. This disorder effect can be understood from the Ginzburg-Landau theory which takes into account elastic quasiparticle scattering suppressing both the transition temperature and the amplitude of the order parameter. We infer that the limiting temperature dependence of the specific heat is linear at low temperatures in the disordered superfluid state, consistent with predictions of gapless excitations everywhere on the Fermi surface.
Recently the influence of antisymmetric spin-orbit coupling has been studied in novel topological superconductors such as half-Heuslers and artificial hetero-structures. We investigate the effect of Rashba and/or Dresselhaus spin-orbit couplings on t he band structure and topological properties of a two-dimensional noncentrosymetric superconductor. For this goal, the topological helical edge modes are analyzed for different spin-orbit couplings as well as for several superconducting pairing symmetries. To explore the transport properties, we examine the response of the spin-polarized edge states to an exchange field in a superconductor-ferromagnet heterostructure. The broken chiral symmetry causes the uni-directional currents at opposite edges.
We study the effect of dissipation on quantum phase fluctuations in d-wave superconductors. Dissipation, arising from a nonzero low frequency optical conductivity which has been measured in experiments below $T_c$, has two effects: (1) a reduction of zero point phase fluctuations, and (2) a reduction of the temperature at which one crosses over to classical thermal fluctuations. For parameter values relevant to the cuprates, we show that the crossover temperature is still too large for classical phase fluctuations to play a significant role at low temperature. Quasiparticles are thus crucial in determining the linear temperature dependence of the in-plane superfluid stiffness. Thermal phase fluctuations become important at higher temperatures and play a role near $T_c$.
In the Ginzburg-Landau theory of superfluid $^{3}$He, the free energy is expressed as an expansion of invariants of a complex order parameter. Strong coupling effects, which increase with increasing pressure, are embodied in the set of coefficients o f these order parameter invariantscite{Leg75,Thu87}. Experiments can be used to determine four independent combinations of the coefficients of the five fourth order invariants. This leaves the phenomenological description of the thermodynamics near $T_{c}$ incomplete. Theoretical understanding of these coefficients is also quite limited. We analyze our measurements of the magnetic susceptibility and the NMR frequency shift in the $B$-phase which refine the four experimental inputs to the phenomenological theory. We propose a model based on existing experiments, combined with calculations by Sauls and Serenecite{Sau81} of the pressure dependence of these coefficients, in order to determine all five fourth order terms. This model leads us to a better understanding of the thermodynamics of superfluid $^{3}$He in its various states. We discuss the surface tension of bulk superfluid $^{3}$He and predictions for novel states of the superfluid such as those that are stabilized by elastic scattering of quasiparticles from a highly porous silica aerogel.
The pressure dependence of the order parameter in superfluid $^3$He is amazingly simple. In the Ginzburg-Landau regime, i.e. close to $T_c$, the square of the order parameter can be accurately measured by its proportionality to NMR frequency shifts a nd is strictly linear in pressure. This behavior is replicated for superfluid $^3$He imbibed in isotropic and anisotropic silica aerogels. The proportionality factor is constrained by the symmetry of the superfluid state and is an important signature of the corresponding superfluid phase. For the purpose of identifying various new superfluid states in the $p$-wave manifold, the order parameter amplitude of $^3$He-A is a useful reference, and this simple pressure dependence greatly facilitates identification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا