ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory

86   0   0.0 ( 0 )
 نشر من قبل Igor Ostrovskiy
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique $beta$-decay transition $^{137}textrm{Xe}(7/2^-)to,^{137}textrm{Cs}(7/2^+)$. The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultra-low background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique $beta$-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.



قيم البحث

اقرأ أيضاً

Searches for double beta decay of $^{134}$Xe were performed with EXO-200, a single-phase liquid xenon detector designed to search for neutrinoless double beta decay of $^{136}$Xe. Using an exposure of $29.6text{ kg}!cdot!text{yr}$, the lower limits o f $text{T}_{1/2}^{2 ubeta!beta}>8.7cdot10^{20}text{ yr}$ and $text{T}_{1/2}^{0 ubeta!beta}>1.1cdot10^{23}text{ yr}$ at 90% confidence level were derived, with corresponding half-life sensitivities of $1.2cdot10^{21}text{ yr}$ and $1.9cdot10^{23}text{ yr}$. These limits exceed those in the literature for $^{134}$Xe, improving by factors of nearly $10^{5}$ and 2 for the two antineutrino and neutrinoless modes, respectively.
532 - J.B. Albert , M. Auger , D.J. Auty 2013
We report on an improved measurement of the 2 u beta beta half-life of Xe-136 performed by EXO-200. The use of a large and homogeneous time projection chamber allows for the precise estimate of the fiducial mass used for the measurement, resulting in a small systematic uncertainty. We also discuss in detail the data analysis methods used for double-beta decay searches with EXO-200, while emphasizing those directly related to the present measurement. The Xe-136 2 u beta beta half-life is found to be 2.165 +- 0.016 (stat) +- 0.059 (sys) x 10^21 years. This is the most precisely measured half-life of any 2 u beta beta decay to date.
A search for neutrinoless double-beta decay ($0 ubetabeta$) in $^{136}$Xe is performed with the full EXO-200 dataset using a deep neural network to discriminate between $0 ubetabeta$ and background events. Relative to previous analyses, the signal de tection efficiency has been raised from 80.8% to 96.4$pm$3.0% and the energy resolution of the detector at the Q-value of $^{136}$Xe $0 ubetabeta$ has been improved from $sigma/E=1.23%$ to $1.15pm0.02%$ with the upgraded detector. Accounting for the new data, the median 90% confidence level $0 ubetabeta$ half-life sensitivity for this analysis is $5.0 cdot 10^{25}$ yr with a total $^{136}$Xe exposure of 234.1 kg$cdot$yr. No statistically significant evidence for $0 ubetabeta$ is observed, leading to a lower limit on the $0 ubetabeta$ half-life of $3.5cdot10^{25}$ yr at the 90% confidence level.
Results from a search for neutrinoless double-beta decay $0 ubetabeta$ of $^{136}$Xe are presented using the first year of data taken with the upgraded EXO-200 detector. Relative to previous searches by EXO-200, the energy resolution of the detector has been improved to $sigma/E$=1.23%, the electric field in the drift region has been raised by 50%, and a system to suppress radon in the volume between the cryostat and lead shielding has been implemented. In addition, analysis techniques that improve topological discrimination between $0 ubetabeta$ and background events have been developed. Incorporating these hardware and analysis improvements, the median 90% confidence level $0 ubetabeta$ half-life sensitivity after combining with the full data set acquired before the upgrade has increased 2-fold to $3.7 times 10^{25}$ yr. No statistically significant evidence for $0 ubetabeta$ is observed, leading to a lower limit on the $0 ubetabeta$ half-life of $1.8times10^{25}$ yr at the 90% confidence level.
We report the first detection of the second-forbidden, non-unique, $2^+rightarrow 0^+$, ground-state transition in the $beta$ decay of $^{20}$F. A low-energy, mass-separated $^{20}rm{F}^+$ beam produced at the IGISOL facility in Jyvaskyla, Finland, w as implanted in a thin carbon foil and the $beta$ spectrum measured using a magnetic transporter and a plastic-scintillator detector. The $beta$-decay branching ratio inferred from the measurement is $b_{beta} = [ 0.41pm 0.08textrm{(stat)}pm 0.07textrm{(sys)}] times 10^{-5}$ corresponding to $log ft = 10.89(11)$, making this one of the strongest second-forbidden, non-unique $beta$ transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars that develop degenerate oxygen-neon cores. Using the new experimental data, we argue that the astrophysical electron-capture rate on $^{20}$Ne is now known to within better than 25% at the relevant temperatures and densities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا