ﻻ يوجد ملخص باللغة العربية
We report the first detection of the second-forbidden, non-unique, $2^+rightarrow 0^+$, ground-state transition in the $beta$ decay of $^{20}$F. A low-energy, mass-separated $^{20}rm{F}^+$ beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the $beta$ spectrum measured using a magnetic transporter and a plastic-scintillator detector. The $beta$-decay branching ratio inferred from the measurement is $b_{beta} = [ 0.41pm 0.08textrm{(stat)}pm 0.07textrm{(sys)}] times 10^{-5}$ corresponding to $log ft = 10.89(11)$, making this one of the strongest second-forbidden, non-unique $beta$ transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars that develop degenerate oxygen-neon cores. Using the new experimental data, we argue that the astrophysical electron-capture rate on $^{20}$Ne is now known to within better than 25% at the relevant temperatures and densities.
textbf{Background}: Superallowed $0^+ rightarrow 0^+$ $beta$ decays of isospin $T=2$ nuclides can be used to test theoretical isospin symmetry breaking corrections applied to extract the CKM matrix element $V_{ud}$ from $T = 0,1$ decays by measuring
The half-life of the $^{20}$F ground state has been measured using a radioactive beam implanted in a plastic scintillator and recording $betagamma$ coincidences together with four CsI(Na) detectors. The result, $T_{1/2} = 11.0011(69)_{rm stat}(30)_{r
The $beta$ decay of the drip-line nucleus $^{20}$Mg gives important information on resonances in $^{20}$Na, which are relevant for the astrophysical $rp$-process. A detailed $beta$ decay spectroscopic study of $^{20}$Mg was performed by a continuous-
We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique $beta$-decay transition $^{137}textrm{Xe}(7/2^-)to,^{137}textrm{Cs}(7/2^+)$. The experimental data were acquired by th
A significant decay branch of 8B to the ground state of 8Be would extend the solar neutrino spectrum to higher energies than anticipated in the standard solar models. These high-energy neutrinos would affect current neutrino oscillation results and a