ﻻ يوجد ملخص باللغة العربية
We design dipolar quantum many-body Hamiltonians that will facilitate the realization of exotic quantum phases under current experimental conditions achieved for polar molecules. The main idea is to modulate both single-body potential barriers and two-body dipolar interactions on a spatial scale of tens of nanometers to strongly enhance energy scales and, therefore, relax temperature requirements for observing new quantum phases of engineered many-body systems. We consider and compare two approaches. In the first, nanoscale barriers are generated with standing wave optical light fields exploiting optical nonlinearities. In the second, static electric field gradients in combination with microwave dressing are used to write nanostructured spatial patterns on the induced electric dipole moments, and thus dipolar interactions. We study the formation of inter-layer and interface bound states of molecules in these configurations, and provide detailed estimates for binding energies and expected losses for present experimental setups.
The exploration of large-scale many-body phenomena in quantum materials has produced many important experimental discoveries, including novel states of entanglement, topology and quantum order as found for example in quantum spin ices, topological in
This paper reviews recent advances in the study of strongly interacting systems of dipolar molecules. Heteronuclear molecules feature large and tunable electric dipole moments, which give rise to long-range and anisotropic dipole-dipole interactions.
We demonstrate a scheme for direct absorption imaging of an ultracold ground-state polar molecular gas near quantum degeneracy. A challenge in imaging molecules is the lack of closed optical cycling transitions. Our technique relies on photon shot-no
Quantum states with long-lived coherence are essential for quantum computation, simulation and metrology. The nuclear spin states of ultracold molecules prepared in the singlet rovibrational ground state are an excellent candidate for encoding and st
We review the recent developments and the current status in the field of quantum-gas cavity QED. Since the first experimental demonstration of atomic self-ordering in a system composed of a Bose-Einstein condensate coupled to a quantized electromagne