ﻻ يوجد ملخص باللغة العربية
Quantum confinement endows two-dimensional (2D) layered materials with exceptional physics and novel properties compared to their bulk counterparts. Although certain two- and few-layer configurations of graphene have been realized and studied, a systematic investigation of the properties of arbitrarily layered graphene assemblies is still lacking. We introduce theoretical concepts and methods for the processing of materials information, and as a case study, apply them to investigate the electronic structure of multi-layer graphene-based assemblies in a high-throughput fashion. We provide a critical discussion of patterns and trends in tight binding band structures and we identify specific layered assemblies using low-dispersion electronic bands as indicators of potentially interesting physics like strongly correlated behavior. A combination of data-driven models for visualization and prediction is used to intelligently explore the materials space. This work more generally aims to increase confidence in the combined use of physics-based and data-driven modeling for the systematic refinement of knowledge about 2D layered materials, with implications for the development of novel quantum devices.
We have used scanning tunneling microscopy and spectroscopy to resolve the spatial variation of the density of states of twisted graphene layers on top of a highly oriented pyrolytic graphite substrate. Owing to the twist a moire pattern develops wit
We theoretically investigate electron transport through corrugated graphene ribbons and show how the ribbon curvature leads to an electronic superlattice with a period set by the corrugation wave length. Transport through the ribbon depends sensitive
We report a combined nano-photocurrent and infrared nanoscopy study of twisted bilayer graphene (TBG) enabling access to the local electronic phenomena at length scales as short as 20 nm. We show that the photocurrent changes sign at carrier densitie
We study the electronic properties of twisted bilayers graphene in the tight-binding approximation. The interlayer hopping amplitude is modeled by a function, which depends not only on the distance between two carbon atoms, but also on the positions
Twisted bi-layer graphene (tBLG) has recently attracted interest due to the peculiar electrical properties that arise from its random rotational configurations. Our experiments on CVD-grown graphene from Cu foil and transferred onto Si substrates, wi