ﻻ يوجد ملخص باللغة العربية
We report a combined nano-photocurrent and infrared nanoscopy study of twisted bilayer graphene (TBG) enabling access to the local electronic phenomena at length scales as short as 20 nm. We show that the photocurrent changes sign at carrier densities tracking the local superlattice density of states of TBG. We use this property to identify domains of varying local twist angle by local photo-thermoelectric effect. Consistent with the photocurrent study, infrared nano-imaging experiments reveal optical conductivity features dominated by twist-angle dependent interband transitions. Our results provide a fast and robust method for mapping the electronic structure of TBG and suggest that similar methods can be broadly applied to probe electronic inhomogeneities of moire superlattices in other van der Waals heterostructures.
Twisted bilayer graphene (tBLG) forms a quasicrystal whose structural and electronic properties depend on the angle of rotation between its layers. Here we present a scanning tunneling microscopy study of gate-tunable tBLG devices supported by atomic
Quasi-periodic moir{e} patterns and their effect on electronic properties of twisted bilayer graphene (TBG) have been intensely studied. At small twist angle $theta$, due to atomic reconstruction, the moire superlattice morphs into a network of narro
We study the electronic properties of twisted bilayers graphene in the tight-binding approximation. The interlayer hopping amplitude is modeled by a function, which depends not only on the distance between two carbon atoms, but also on the positions
We numerically investigate the electronic transport properties between two mesoscopic graphene disks with a twist by employing the density functional theory coupled with non-equilibrium Greens function technique. By attaching two graphene leads to up
Close to a magical angle, twisted bilayer graphene (TBLG) systems exhibit isolated flat electronic bands and, accordingly, strong electron localization. TBLGs have hence been ideal platforms to explore superconductivity, correlated insulating states,