ﻻ يوجد ملخص باللغة العربية
Incorporating covariate information into functional data analysis methods can substantially improve modeling and prediction performance. However, many functional data analysis methods do not make use of covariate or supervision information, and those that do often have high computational cost or assume that only the scores are related to covariates, an assumption that is usually violated in practice. In this article, we propose a functional data analysis framework that relates both the mean and covariance function to covariate information. To facilitate modeling and ensure the covariance function is positive semi-definite, we represent it using splines and design a map from Euclidean space to the symmetric positive semi-definite matrix manifold. Our model is combined with a roughness penalty to encourage smoothness of the estimated functions in both the temporal and covariate domains. We also develop an efficient method for fast evaluation of the objective and gradient functions. Cross-validation is used to choose the tuning parameters. We demonstrate the advantages of our approach through a simulation study and an astronomical data analysis.
In spatial statistics, it is often assumed that the spatial field of interest is stationary and its covariance has a simple parametric form, but these assumptions are not appropriate in many applications. Given replicate observations of a Gaussian sp
Functional data, with basic observational units being functions (e.g., curves, surfaces) varying over a continuum, are frequently encountered in various applications. While many statistical tools have been developed for functional data analysis, the
This paper considers the problem of variable selection in regression models in the case of functional variables that may be mixed with other type of variables (scalar, multivariate, directional, etc.). Our proposal begins with a simple null model and
In this paper, we generalize the metric-based permutation test for the equality of covariance operators proposed by Pigoli et al. (2014) to the case of multiple samples of functional data. To this end, the non-parametric combination methodology of Pe
This paper proposes a two-fold factor model for high-dimensional functional time series (HDFTS), which enables the modeling and forecasting of multi-population mortality under the functional data framework. The proposed model first decomposes the HDF