ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing Low-Redshift Cosmic Acceleration with Large-Scale Structure

84   0   0.0 ( 0 )
 نشر من قبل Seshadri Nadathur
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the cosmological implications of measurements of the void-galaxy cross-correlation at redshift $z=0.57$ combined with baryon acoustic oscillation (BAO) data at $0.1<z<2.4$. We find direct evidence of the late-time acceleration due to dark energy at $>10sigma$ significance from these data alone, independent of the cosmic microwave background and supernovae. Using a nucleosynthesis prior on $Omega_bh^2$, we measure the Hubble constant to be $H_0=72.3pm1.9;{rm km,s}^{-1}{rm Mpc}^{-1}$ from BAO+voids at $z<2$, and $H_0=69.0pm1.2;{rm km,s}^{-1}{rm Mpc}^{-1}$ when adding Lyman-$alpha$ BAO at $z=2.34$, both independent of the CMB. Adding voids to CMB, BAO and supernova data greatly improves measurement of the dark energy equation of state, increasing the figure of merit by >40%, but remaining consistent with flat flat $Lambda$ cold dark matter.



قيم البحث

اقرأ أيضاً

The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude $f_{rm NL}^{rm loc}$ ($f_{rm NL}^{rm eq}$), natural target levels of sensitivity are $Delta f_{rm NL}^{rm loc, eq.} simeq 1$. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.
We compare Baryonic Acoustic Oscillation (BAO) and Redshift Space Distortion (RSD) measurements from recent galaxy surveys with their Fisher matrix based predictions. Measurements of the position of the BAO signal lead to constraints on the comoving angular diameter distance $D_{M}$ and the Hubble distance $D_{H}$ that agree well with their Fisher matrix based expectations. However, RSD-based measurements of the growth rate $f sigma_{8}$ do not agree with the predictions made before the surveys were undertaken, even when repeating those predictions using the actual survey parameters. We show that this is due to a combination of effects including degeneracies with the geometric parameters $D_{M}$ and $D_{H}$, and optimistic assumptions about the scale to which the linear signal can be extracted. We show that measurements using current data and large-scale modelling techniques extract an equivalent amount of signal to that in the linear regime for $k < 0.08 ,h,{rm Mpc}^{-1}$, remarkably independent of the sample properties and redshifts covered.
We previously identified LH146, a diffuse X-ray source in the Lockman Hole, as a galaxy cluster at redshift 1.753. The redshift was based on one spectroscopic value, buttressed by seven additional photometric redshifts. We here confirm the previous s pectroscopic redshift and present concordant spectroscopic redshifts for an additional eight galaxies. The average of these nine redshifts is 1.714 +/- 0.012 (error on mean). Scrutiny of the galaxy distribution in redshift and the plane of the sky shows that there are two concentrations of galaxies near the X-ray source. In addition there are three diffuse X-ray sources spread along the axis connecting the galaxy concentrations. LH146 is one of these three and lies approximately at the center of the two galaxy concentrations and the outer two diffuse X-ray sources. We thus conclude that LH146 is at the redshift initially reported but it is not a single virialized galaxy cluster as previously assumed. Rather it appears to mark the approximate center of a larger region containing more objects. For brevity we term all these objects and their alignments as large scale structure. The exact nature of LH146 itself remains unclear.
177 - Humna Awan 2016
The Large Synoptic Survey Telescope (LSST) will survey the southern sky from 2022--2032 with unprecedented detail. Since the observing strategy can lead to artifacts in the data, we investigate the effects of telescope-pointing offsets (called dither s) on the $r$-band coadded 5$sigma$ depth yielded after the 10-year survey. We analyze this survey depth for several geometric patterns of dithers (e.g., random, hexagonal lattice, spiral) with amplitude as large as the radius of the LSST field-of-view, implemented on different timescales (per season, per night, per visit). Our results illustrate that per night and per visit dither assignments are more effective than per season. Also, we find that some dither geometries (e.g., hexagonal lattice) are particularly sensitive to the timescale on which the dithers are implemented, while others like random dithers perform well on all timescales. We then model the propagation of depth variations to artificial fluctuations in galaxy counts, which are a systematic for large-scale structure studies. We calculate the bias in galaxy counts caused by the observing strategy, accounting for photometric calibration uncertainties, dust extinction, and magnitude cuts; uncertainties in this bias limit our ability to account for structure induced by the observing strategy. We find that after 10 years of the LSST survey, the best dither strategies lead to uncertainties in this bias smaller than the minimum statistical floor for a galaxy catalog as deep as $r$$<$27.5. A few of these strategies bring the uncertainties close to the statistical floor for $r$$<$25.7 after only one year of survey.
This is a report on the status and prospects of the quantification of neutrino properties through the cosmological neutrino background for the Cosmic Frontier of the Division of Particles and Fields Community Summer Study long-term planning exercise. Experiments planned and underway are prepared to study the cosmological neutrino background in detail via its influence on distance-redshift relations and the growth of structure. The program for the next decade described in this document, including upcoming spectroscopic galaxy surveys eBOSS and DESI and a new Stage-IV CMB polarization experiment CMB-S4, will achieve sigma(sum m_nu) = 16 meV and sigma(N_eff) = 0.020. Such a mass measurement will produce a high significance detection of non-zero sum m_nu, whose lower bound derived from atmospheric and solar neutrino oscillation data is about 58 meV. If neutrinos have a minimal normal mass hierarchy, this measurement will definitively rule out the inverted neutrino mass hierarchy, shedding light on one of the most puzzling aspects of the Standard Model of particle physics --- the origin of mass. This precise a measurement of N_eff will allow for high sensitivity to any light and dark degrees of freedom produced in the big bang and a precision test of the standard cosmological model prediction that N_eff = 3.046.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا