ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing LSST Dither Strategies for Survey Uniformity and Large-Scale Structure Systematics

178   0   0.0 ( 0 )
 نشر من قبل Humna Awan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Humna Awan




اسأل ChatGPT حول البحث

The Large Synoptic Survey Telescope (LSST) will survey the southern sky from 2022--2032 with unprecedented detail. Since the observing strategy can lead to artifacts in the data, we investigate the effects of telescope-pointing offsets (called dithers) on the $r$-band coadded 5$sigma$ depth yielded after the 10-year survey. We analyze this survey depth for several geometric patterns of dithers (e.g., random, hexagonal lattice, spiral) with amplitude as large as the radius of the LSST field-of-view, implemented on different timescales (per season, per night, per visit). Our results illustrate that per night and per visit dither assignments are more effective than per season. Also, we find that some dither geometries (e.g., hexagonal lattice) are particularly sensitive to the timescale on which the dithers are implemented, while others like random dithers perform well on all timescales. We then model the propagation of depth variations to artificial fluctuations in galaxy counts, which are a systematic for large-scale structure studies. We calculate the bias in galaxy counts caused by the observing strategy, accounting for photometric calibration uncertainties, dust extinction, and magnitude cuts; uncertainties in this bias limit our ability to account for structure induced by the observing strategy. We find that after 10 years of the LSST survey, the best dither strategies lead to uncertainties in this bias smaller than the minimum statistical floor for a galaxy catalog as deep as $r$$<$27.5. A few of these strategies bring the uncertainties close to the statistical floor for $r$$<$25.7 after only one year of survey.

قيم البحث

اقرأ أيضاً

In this paper we present and characterize a nearest-neighbors color-matching photometric redshift estimator that features a direct relationship between the precision and accuracy of the input magnitudes and the output photometric redshifts. This aspe ct makes our estimator an ideal tool for evaluating the impact of changes to LSST survey parameters that affect the measurement errors of the photometry, which is the main motivation of our work (i.e., it is not intended to provide the best photometric redshifts for LSST data). We show how the photometric redshifts will improve with time over the 10-year LSST survey and confirm that the nominal distribution of visits per filter provides the most accurate photo-$z$ results. The LSST survey strategy naturally produces observations over a range of airmass, which offers the opportunity of using an SED- and $z$-dependent atmospheric affect on the observed photometry as a color-independent redshift indicator. We show that measuring this airmass effect and including it as a prior has the potential to improve the photometric redshifts and can ameliorate extreme outliers, but that it will only be adequately measured for the brightest galaxies, which limits its overall impact on LSST photometric redshifts. We furthermore demonstrate how this airmass effect can induce a bias in the photo-$z$ results, and caution against survey strategies that prioritize high-airmass observations for the purpose of improving this prior. Ultimately, we intend for this work to serve as a guide for the expectations and preparations of the LSST science community with regards to the minimum quality of photo-$z$ as the survey progresses.
We examine the cosmological implications of measurements of the void-galaxy cross-correlation at redshift $z=0.57$ combined with baryon acoustic oscillation (BAO) data at $0.1<z<2.4$. We find direct evidence of the late-time acceleration due to dark energy at $>10sigma$ significance from these data alone, independent of the cosmic microwave background and supernovae. Using a nucleosynthesis prior on $Omega_bh^2$, we measure the Hubble constant to be $H_0=72.3pm1.9;{rm km,s}^{-1}{rm Mpc}^{-1}$ from BAO+voids at $z<2$, and $H_0=69.0pm1.2;{rm km,s}^{-1}{rm Mpc}^{-1}$ when adding Lyman-$alpha$ BAO at $z=2.34$, both independent of the CMB. Adding voids to CMB, BAO and supernova data greatly improves measurement of the dark energy equation of state, increasing the figure of merit by >40%, but remaining consistent with flat flat $Lambda$ cold dark matter.
We compare Baryonic Acoustic Oscillation (BAO) and Redshift Space Distortion (RSD) measurements from recent galaxy surveys with their Fisher matrix based predictions. Measurements of the position of the BAO signal lead to constraints on the comoving angular diameter distance $D_{M}$ and the Hubble distance $D_{H}$ that agree well with their Fisher matrix based expectations. However, RSD-based measurements of the growth rate $f sigma_{8}$ do not agree with the predictions made before the surveys were undertaken, even when repeating those predictions using the actual survey parameters. We show that this is due to a combination of effects including degeneracies with the geometric parameters $D_{M}$ and $D_{H}$, and optimistic assumptions about the scale to which the linear signal can be extracted. We show that measurements using current data and large-scale modelling techniques extract an equivalent amount of signal to that in the linear regime for $k < 0.08 ,h,{rm Mpc}^{-1}$, remarkably independent of the sample properties and redshifts covered.
The statistics of primordial curvature fluctuations are our window into the period of inflation, where these fluctuations were generated. To date, the cosmic microwave background has been the dominant source of information about these perturbations. Large scale structure is however from where drastic improvements should originate. In this paper, we explain the theoretical motivations for pursuing such measurements and the challenges that lie ahead. In particular, we discuss and identify theoretical targets regarding the measurement of primordial non-Gaussianity. We argue that when quantified in terms of the local (equilateral) template amplitude $f_{rm NL}^{rm loc}$ ($f_{rm NL}^{rm eq}$), natural target levels of sensitivity are $Delta f_{rm NL}^{rm loc, eq.} simeq 1$. We highlight that such levels are within reach of future surveys by measuring 2-, 3- and 4-point statistics of the galaxy spatial distribution. This paper summarizes a workshop held at CITA (University of Toronto) on October 23-24, 2014.
The LSST survey will provide unprecedented statistical power for measurements of dark energy. Consequently, controlling systematic uncertainties is becoming more important than ever. The LSST observing strategy will affect the statistical uncertainty and systematics control for many science cases; here, we focus on weak lensing systematics. The fact that the LSST observing strategy involves hundreds of visits to the same sky area provides new opportunities for systematics mitigation. We explore these opportunities by testing how different dithering strategies (pointing offsets and rotational angle of the camera in different exposures) affect additive weak lensing shear systematics on a baseline operational simulation, using the $rho-$statistics formalism. Some dithering strategies improve systematics control at the end of the survey by a factor of up to $sim 3-4$ better than others. We find that a random translational dithering strategy, applied with random rotational dithering at every filter change, is the most effective of those strategies tested in this work at averaging down systematics. Adopting this dithering algorithm, we explore the effect of varying the area of the survey footprint, exposure time, number of exposures in a visit, and exposure to the Galactic plane. We find that any change that increases the average number of exposures (in filters relevant to weak lensing) reduces the additive shear systematics. Some ways to achieve this increase may not be favorable for the weak lensing statistical constraining power or for other probes, and we explore the relative trade-offs between these options given constraints on the overall survey parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا