ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable Intelligent Surface-Aided MISO Systems with Statistical CSI: Channel Estimation, Analysis and Optimization

114   0   0.0 ( 0 )
 نشر من قبل Cunhua Pan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper investigates the reconfigurable reflecting surface (RIS)-aided multiple-input-single-output (MISO) systems with imperfect channel state information (CSI), where RIS-related channels are modeled by Rician fading. Considering the overhead and complexity in practical systems, we employ the low-complexity maximum ratio combining (MRC) beamforming at the base station (BS), and configure the phase shifts of the RIS based on long-term statistical CSI. Specifically, we first estimate the overall channel matrix based on the linear minimum mean square error (LMMSE) estimator, and evaluate the performance of MSE and normalized MSE (NMSE). Then, with the estimated channel, we derive the closed-form expressions of the ergodic rate. The derived expressions show that with Rician RIS-related channels, the rate can maintain at a non-zero value when the transmit power is scaled down proportionally to $1/M$ or $1/N^2$, where $M$ and $N$ are the number of antennas and reflecting elements, respectively. However, if all the RIS-related channels are fully Rayleigh, the transmit power of each user can only be scaled down proportionally to $1/sqrt{M}$ or $1/N$. Finally, numerical results verify the promising benefits from the RIS to traditional MISO systems.



قيم البحث

اقرأ أيضاً

111 - Kangda Zhi , Cunhua Pan , Hong Ren 2021
This paper investigates the two-timescale transmission design for reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems, where the beamforming at the base station (BS) is adapted to the rapidly-changing instantaneous channel state information (CSI), while the passive beamforming at the RIS is adapted to the slowly-changing statistical CSI. Specifically, we first propose a linear minimum mean square error (LMMSE) estimator to obtain the aggregated channel from the users to the BS in each channel coherence interval. Based on the estimated channel, we apply the low-complexity maximal ratio combining (MRC) beamforming at the BS, and then derive the ergodic achievable rate in a closed form expression. To draw design insights, we perform a detailed theoretical analysis departing from the derived ergodic achievable rate. If the BS-RIS channel is Rician distributed, we prove that the transmit power can be scaled proportionally to $1/M$, as the number of BS antennas, $M$, grows to infinity while maintaining a non-zero rate. If the BS-RIS channel is Rayleigh distributed, the transmit power can be scaled either proportionally to $1/sqrt{M}$ as $M$ grows large, or proportionally to $1/N$ as the number of reflecting elements, $N$, grows large, while still maintaining a non-zero rate. By capitalizing on the derived expression of the data rate under the statistical knowledge of the CSI, we maximize the minimum user rate by designing the passive beamforming at the RIS. Numerical results confirm that, even in the presence of imperfect CSI, the integration of an RIS in massive MIMO systems results in promising performance gains. In addition, the obtained results reveal that it is favorable to place the RIS close to the users rather than close to the BS.
Reconfigurable intelligent surface (RIS)-aided networks have been investigated for the purpose of improving the system performance. However, the introduced unit modulus phase shifts and coupling characteristic bring enormous challenges to the optimiz ation in the RIS-aided networks. Many efforts have been made to jointly optimize phase shift vector and other parameters. This article intends to survey the latest research results about the optimization in RIS-aided networks. A taxonomy is devised to categorize the existing literatures based on optimization types, phase shift form, and decoupling methods. Furthermore, in alternating optimization framework, we introduce in detail how to exploit the aforementioned technologies flexibly. It is known that most works could not guarantee a stationary point. To overcome this problem, we propose a unified framework for the optimization problem of RIS-aided networks with continuous phase shifts to find a stationary point. Finally, key challenges are outlined to provide guidelines for the domain researchers and designers to explore more efficient optimization frameworks, and then open issues are discussed.
147 - Kangda Zhi , Cunhua Pan , Hong Ren 2021
This letter investigates the reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems with a two-timescale design. First, the zero-forcing (ZF) detector is applied at the base station (BS) based on instanta neous aggregated CSI, which is the superposition of the direct channel and the cascaded user-RIS-BS channel. Then, by leveraging the channel statistical property, we derive the closed-form ergodic achievable rate expression. Using a gradient ascent method, we design the RIS passive beamforming only relying on the long-term statistical CSI. We prove that the ergodic rate can reap the gains on the order of $mathcal{O}left(log_{2}left(MNright)right)$, where $M$ and $N$ denote the number of BS antennas and RIS elements, respectively. We also prove the striking superiority of the considered RIS-aided system with ZF detectors over the RIS-free systems and RIS-aided systems with maximum-ratio combining (MRC).
We investigate a reconfigurable intelligent surface (RIS)-aided multi-user massive multiple-input multi-output (MIMO) system where low-resolution digital-analog converters (DACs) are configured at the base station (BS) in order to reduce the cost and power consumption. An approximate analytical expression for the downlink achievable rate is derived based on maximum ratio transmission (MRT) and additive quantization noise model (AQNM), and the rate maximization problem is solved by particle swarm optimization (PSO) method under both continuous phase shifts (CPSs) and discrete phase shifts (DPSs) at the RIS. Simulation results show that the downlink sum achievable rate tends to a constant with the increase of the number of quantization bits of DACs, and four quantization bits are enough to capture a large portion of the performance of the ideal perfect DACs case.
110 - Shu Sun , Hangsong Yan 2020
In wireless systems aided by reconfigurable intelligent surfaces (RISs), channel state information plays a pivotal role in achieving the performance gain of RISs. Mobility renders accurate channel estimation (CE) more challenging due to the Doppler e ffect. In this letter, we propose two practical wideband CE schemes incorporating Doppler shift adjustment (DSA) for multi-path and single-path propagation environments, respectively, for RIS-assisted communication with passive reflecting elements. For the multi-path scenario, ordinary CE is first executed assuming quasi-static channels, followed by DSA realized via joint RIS reflection pattern selection and transformations between frequency and time domains. The proposed CE necessitates only one more symbol incurring negligible extra overhead compared with the number of symbols required for the original CE. For the single-path case which is especially applicable to millimeter-wave and terahertz systems, a novel low-complexity CE method is devised capitalizing on the form of the array factors at the RIS. Simulation results demonstrate that the proposed algorithms yield high CE accuracy and achievable rate with low complexity, and outperform representative benchmark schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا