ﻻ يوجد ملخص باللغة العربية
We present a general prescription for determining the global U(1) symmetries of six-dimensional superconformal field theories (6D SCFTs). We use the quiver-like gauge theory description of the tensor branch to identify candidate U(1) symmetries which can act on generalized matter. The condition that these candidate U(1)s are free of Adler-Bell-Jackiw (ABJ) anomalies provides bottom-up constraints for U(1)s. This agrees with the answer obtained from symmetry breaking patterns induced by Higgs branch flows. We provide numerous examples illustrating the details of this proposal. In the F-theory realization of these theories, some of these symmetries originate from deformations of non-abelian flavor symmetries localized on a component of the discriminant, while others come from an additional generator of the Mordell-Weil group. We also provide evidence that some of these global U(1)s do not arise from gauge symmetries, as would happen in taking a decoupling limit of a model coupled to six-dimensional supergravity.
We consider a class of 6D superconformal field theories (SCFTs) which have a large $N$ limit and a semi-classical gravity dual description. Using the quiver-like structure of 6D SCFTs we study a subsector of operators protected from large operator mi
We consider all 4d $mathcal{N}=2$ theories of class $mathcal{S}$ arising from the compactification of exceptional 6d $(2,0)$ SCFTs on a three-punctured sphere with a simple puncture. We find that each of these 4d theories has another origin as a 6d $
Recent work has established a uniform characterization of most 6D SCFTs in terms of generalized quivers with conformal matter. Compactification of the partial tensor branch deformation of these theories on a $T^2$ leads to 4D $mathcal{N} = 2$ SCFTs w
Given the recent geometrical classification of 6d $(1,0)$ SCFTs, a major question is how to compute for this large class their elliptic genera. The latter encode the refined BPS spectrum of the SCFTs, which determines geometric invariants of the asso
The building blocks of 6d $(1,0)$ SCFTs include certain rank one theories with gauge group $G=SU(3),SO(8),F_4,E_{6,7,8}$. In this paper, we propose a universal recursion formula for the elliptic genera of all such theories. This formula is solved fro